Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x1 / x2 = x3 / x4 => x1 + x3 / x2 + x4 => (x1 +x3)2 / (x2+x4)2 1
x1 / x2 = x3 / x4 => (x1/ x2)2 = (x3/x4)2 => x12 / x22 = x32 / x42
=> 2017x12 / 2017x22 = x32/ x42 => 2017x12+x32/2017x2+x42 2
Từ 1, 2 => 2017x12 +x32 / 2017x22 + x42 = (x1+x3)2 / (x2+x4)2
Bỏ x4 đi nhé bn
Theo t/c dãy tỉ số=nhau:
\(\frac{x_1-1}{3}=\frac{x_2-2}{2}=\frac{x_3-3}{1}=\frac{x_1-1+x_2-2+x_3-3}{3+2+1}\)\(=\frac{\left(x_1+x_2+x_3\right)-\left(1+2+3\right)}{6}=\frac{30-6}{6}=\frac{24}{6}=4\)
=>x1-1=4.3=12=>x1=13
x2-2=4.2=8=>x2=10
x3-3=4=>x3=7
Theo TCDTSBN ta có:
\(\frac{x1}{x2}=\frac{x2}{x3}=....=\frac{x2008}{x2009}=\frac{x1+x2+...+x2008}{x2+x3+...+x2009}\)
Ta có: \(\frac{x1}{x2}=\frac{x1+x2+...+x2008}{x2+x3+....+x2009}\left(1\right)\)
\(\frac{x2}{x3}=\frac{x1+x2+...+x2008}{x2+x3+...+x2009}\left(2\right)\)
............
\(\frac{x2008}{x2009}=\frac{x1+x2+...+x2008}{x2+x3+...+x2009}\left(2008\right)\)
Nhân (1),(2),....(2008) vế với vế:
\(\frac{x1}{x2}\cdot\frac{x2}{x3}\cdot\cdot\cdot\cdot\frac{x2008}{x2009}=\frac{x1}{x2009}=\left(\frac{x1+x2+...+x2008}{x2+x3+...+x2009}\right)^{2008}\)
Vậy...
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=...=\frac{x_{2008}}{x_{2009}}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)
=> \(\frac{x_1}{x_2}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)
\(\frac{x_2}{x_3}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)
\(\frac{x_3}{x_4}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)
..........
\(\frac{x_{2008}}{x_{2009}}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)
Như vậy nhân các vế lại ta có \(\frac{x_1}{x_2}.\frac{x_2}{x_3}.\frac{x_3}{x_4}.....\frac{x_{2008}}{x_{2009}}=\frac{x_1.x_2.x_3...x_{2008}}{x_2.x_3.x_4....x_{2009}}=\frac{x_1}{x_{2009}}\) (đpcm)