K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Đại số lớp 7

17 tháng 3 2017

Bài 1:

Tổng 2 số bất kỹ chia hết cho 2-->4 số đó cùng chẵn hoặc cùng lẻ

tổng 3 số bất kỳ chia hết cho 3 --> 4 số đó có sô dư bằng nhau khi chia hết cho 3.

Bộ 4 số nhỏ nhất là: \(a_{1,2,3,4}=\left(6n_{_{1,2,3,4}}-5\right)=1+7+13+19=40\)

22 tháng 3 2017

dễ mà

t thì chẳng thấy dễ chút nào nhưng t làm dc

28 tháng 3 2017

Theo đầu bài ta có :\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)

Lại có a,b,c\(\ne\)0 vì mẫu phải khác 0

=>\(\dfrac{2bz-3cy}{a}.\dfrac{a}{a}=\dfrac{3cx-az}{2b}.\dfrac{2b}{2b}=\dfrac{ay-2bx}{3c}.\dfrac{3c}{3c}\)

=>\(\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}=\dfrac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+4b^2+9c^2}=\dfrac{0}{a^2+4b^2+9c^2}=0\)

\(\dfrac{2abz-3acy}{a^2}=0\Rightarrow2abz=3acy\) => 2bz = 3cy => \(\dfrac{z}{3c}=\dfrac{y}{2b}\) (1)

\(\dfrac{6bcx-2abz}{4b^2}=0\) => 6bcx = 2abz => 3cx = az => \(\dfrac{x}{a}=\dfrac{z}{3c}\) (2)

Từ (1) và (2) =>\(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\) (đpcm)

bn làm sai đề rùi

8 tháng 7 2017

Bài 1:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x-2y=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\2z-4x=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=8\end{matrix}\right.\)

Vậy \(x=4;y=6;z=8\)

Bài 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}=\dfrac{2abz-3acy+6bcx-2baz+3cay-6bcx}{a^2+4b^2+9c^2}\)

\(\Rightarrow\left\{{}\begin{matrix}2bz-3cy=0\Rightarrow2bz=3cy\Rightarrow\dfrac{y}{2b}=\dfrac{z}{3c}\\3cx-az=0\Rightarrow3cx=az\Rightarrow\dfrac{x}{a}=\dfrac{z}{3c}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\left(đpcm\right)\)

Vậy \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)

25 tháng 12 2017

Ta có : \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)

=> \(\dfrac{\left(2bz-3cy\right)a}{a^2}=\dfrac{\left(3cx-az\right)2b}{4b^2}=\dfrac{\left(ay-2bx\right)3c}{9c^2}\)

\(\dfrac{2bza-3cya}{a^2}=\dfrac{6cxb-2bza}{4b^2}=\dfrac{3cya-6cxb}{9c^2}\)

Áp dụng t/c dãy tỉ số bằng nhau :

\(\dfrac{2bza-3cya}{a^2}=\dfrac{6cxb-2bza}{4b^2}=\dfrac{3cya-6cxb}{9c^2}=\dfrac{2bza-3cya+6xb-2bza+3cya-6cxb}{a^2+4b^2+9c^2}=\dfrac{0}{a^2+4b^2+9c^2}=0\)Ta có : \(\dfrac{2bza-3cya}{a^2}=0\)

=> 2bza - 3cya = 0

=> 2bza = 3cya

=> \(\dfrac{y}{2b}=\dfrac{z}{3c}\) (1)

Ta có : \(\dfrac{6cxb-2bza}{4b^2}=0\)

=> 6cxb - 2bza = 0

=> 6cxb = 2bza

=> 3cx = za

=> \(\dfrac{z}{3c}=\dfrac{x}{a}\) (2)

Từ (1),(2) => \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\) (ĐPCM)

17 tháng 7 2017

Từ \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)

\(\Rightarrow\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)

\(=\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}\)

\(=\dfrac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+4b^2+9c^2}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2bz-3cy}{a}=0\\\dfrac{3cx-az}{2b}=0\\\dfrac{ay-2bx}{3c}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2bz=3cy\\3cx=az\\ay=2bx\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)

17 tháng 7 2017

Cái này bn để ý né ở trên tỉ lệ thức nhé. Để ý sự liên quan của chúng. Ko bt giải thích sao nữa ???