K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

Ta có :

\(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{b}-\dfrac{c}{d}< 0\)

\(\Rightarrow\dfrac{ad-bc}{bd}< 0\)

Mà \(bd>0\) (do b,d dương)

\(\Rightarrow\left\{{}\begin{matrix}ad-bc< 0\\bd>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ad< bc\\bd>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{bd}{ad}>\dfrac{bd}{bc}\)

\(\Rightarrow\dfrac{b}{a}>\dfrac{d}{c}\)

\(\rightarrowđpcm\)

21 tháng 3 2017

Bài 1:a,b,c ba cạnh tam giác => a,b,c dương

\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)

\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)

\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)

p/s: đề sao làm vậy:

mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn

22 tháng 3 2017

hướng dẫn bài 2,3 giúp mình với

28 tháng 6 2017

Tính chất cơ bản của phân thức

12 tháng 2 2019

Áp dụng BĐT Svacxơ:

\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{cd}+\dfrac{1}{da}\ge\dfrac{4}{ab+bc+cd+da}\)

Áp dụng BĐT Cô-si:

\(\dfrac{4}{ab+bc+cd+da}\ge\dfrac{4}{a^2+b^2+c^2+d^2}\)

Ta cần c/m: \(\dfrac{4}{a^2+b^2+c^2+d^2}\ge a^2+b^2+c^2+d^2\)

\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)^2\ge4\)

Áp dụng BĐT Svacxơ: \(\left(\dfrac{a^2}{1}+\dfrac{b^2}{1}+\dfrac{c^2}{1}+\dfrac{d^2}{1}\right)^2\ge\dfrac{\left(a+b+c+d\right)^{2^2}}{16}\)

mà a+b+c+d=4 nên: \(\dfrac{\left(a+b+c+d\right)^4}{16}\ge\dfrac{64}{16}=4=VP\)

Vậy ta có đpcm.

12 tháng 2 2019

a+b+c+d=4 nha

11 tháng 5 2017

\(\dfrac{a+b}{a+b+c}\)>\(\dfrac{a+b}{a+b+c+d}\)

\(\dfrac{b+c}{b+c+d}\)>\(\dfrac{b+c}{b+c+d+a}\)

\(\dfrac{c+d}{c+d+a}\)>\(\dfrac{c+d}{c+d+a+b}\)

\(\dfrac{d+a}{d+a+b}\)>\(\dfrac{d+a}{d+a+b+c}\)

cộng từng vế của bất đẳng thức lại với nhau ta được

\(\dfrac{a+b}{a+b+c}\)+\(\dfrac{b+c}{b+c+d}\)+\(\dfrac{c+d}{c+d+a}\)+\(\dfrac{d+a}{d+a+b}\)>\(\dfrac{a+b}{a+b+c+d}\)+\(\dfrac{b+c}{b+c+d+a}\)+\(\dfrac{c+d}{c+d+a+b}\)+\(\dfrac{d+a}{d+a+b+c}\)=\(\dfrac{2.\left(a+b+c+d\right)}{a+b+c+d}\)=2

11 tháng 5 2017

hình như sai đề

21 tháng 12 2017

2. Giả Sử A =n^2 +11n + 39 chia hết 49 tức A chia hết cho 7

\(A=n^2+11n+39\\ =\left(n^2+2n\right)+\left(9n+18\right)+21\\ =n\left(n+2\right)+9\left(n+2\right)+21\\ =\left(n+2\right)\left(n+9\right)+21⋮7\)

\(\Rightarrow\left(n+2\right)\left(n+9\right)⋮7\)

\(\left(n+9\right)-\left(n+2\right)=7⋮7\\ \Rightarrow\left(n+9\right)\left(n+2\right)⋮49\\ \Rightarrow A⋮̸49\left(voly\right)\)

=> g/s sai

=> đpcm

22 tháng 12 2017

bạn ơi còn hai câu đâu ùi???

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

7 tháng 3 2021

7 tháng 3 2021