\(\bigtriangleup{ABC}\) nhọn , trung tuyến AM . Gọi H là trực tâm , O là giao của c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

a) Xét \(\Delta BAE\)\(\Delta BHE\) có:

-\(\widehat{BAE}=\widehat{BHE}=90^0\)(gt)

-BE chung

-\(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta HBE\) (cạnh huyền-góc nhọn) (đpcm)

b) Ta có:

-AB=HB (do \(\Delta ABE=\Delta HBE\)) nên B thuộc đường trung trực của AH (1)

-EA=EH (do \(\Delta ABE=\Delta HBE\)) nên E thuộc đường trung trực của AH (2)

Từ (1) và (2), ta có: BE là đường trung trực của AH (đpcm)

c) Ta có:

\(\widehat{BEC}\) là góc ngoài của \(\Delta BEA\)

\(\Rightarrow\) \(\widehat{BEC}\) = \(\widehat{BAE}+\widehat{ABE}\)

\(\Rightarrow\widehat{BEC}=90^0+\widehat{ABE}\)

\(\Rightarrow\widehat{BEC}>90^0\)

Trong \(\Delta BEC\) có: \(\widehat{BEC}\) là góc lớn nhất nên BC là cạnh lớn nhất (quan hệ góc và cạnh đối diện của tam giác) hay BC>BE \(\Rightarrow\)AC>AE (quan hệ đường xiên-hình chiếu) (đpcm)

d) Xét \(\Delta AEK\)\(\Delta HEC\) có:

-\(\widehat{KAE}=\widehat{EHC}=90^0\)

-EA=HE (câu a)

-\(\widehat{AEK}=\widehat{HEC}\) (đối đỉnh)

=> \(\Delta AEK=\Delta HEC\) (cạnh góc vuông-góc nhọn kề)

=> AK=HC (2 cạnh tương ứng)

Ta có:

BA=BH và AK=HC

=> BA+AK=BH+HC

=> BK=BC

Xét \(\Delta BKI\)\(\Delta BCI\):

-BK=BC (cmt)

-KI=IC (gt)

-BI chung

=> \(\Delta BKI=\Delta BCI\left(c.c.c\right)\)

=> \(\widehat{KBI}=\widehat{CBI}\) (2 góc tương ứng)

=> BI là phân giác của \(\widehat{ABC}\)

Mà BE cũng là phân giác của \(\widehat{ABC}\)

=>BI\(\equiv\)BE hay B,E,I thẳng hàng (đpcm)

3 tháng 5 2017

A B C E H K I

25 tháng 11 2019


ABCI

a) Xét tam giác ABC và tam giác DMC có :

BC = CM ( GT )

Góc ACB = góc MCD ( 2 góc đối đỉnh (

AC = CD ( GT )

=> tam giác ABC = tam giác DMC ( c - g - c )

b) Theo ý a , ta có : tam giác ABC = tam giác DMC

=> Góc BAD = góc ADM ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong

=> MD // AB ( dấu hiệu )

c) Nghĩ nốt đã

25 tháng 11 2019

Ảnh đẹp thì

12 tháng 7 2019

A B C D

1) \(\widehat{ADB}\) là góc ngoài của t/giác ABC => \(\widehat{ADB}=\widehat{C}+\widehat{DAC}\)

\(\widehat{ADC}\)là góc ngoài của t/giác AD => \(\widehat{ADC}=B+\widehat{DAB}\)

Mà \(\widehat{B}=\widehat{C}\)(gt); \(\widehat{DAB}=\widehat{DAC}\) (gt)

=> \(\widehat{DAB}=\widehat{DAC}\)

2) Xét t/giác ABD và t/giác ADC

có: \(\widehat{BAD}=\widehat{CAD}\) (gt)

   AD : chung

  \(\widehat{ADB}=\widehat{ADC}\)(cmt)

=> t/giác ABD = t/giác ADC (g.c.g)