Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì AH = HD => EH là đg trung tuyến của tg ADE
Khi đó C thuộc đg trung tuyến EH (1)
Do tg ABC cân tại A
mà AH là đg cao của tg ABC
=> AH là đg trung trực của tg ABC
=> BH = CH
=> BH = CH = 1/2 BC
Lại do BC = CE
=> CH = 1/2 CE
hay CE = 2/3 EH (2)
Từ (1); (2) => C là trọng tâm tg ADE.
Xét ΔAHBΔAHB và ΔAHCΔAHC có :
HAHA chung
HB=HCHB=HC ( AH là đường trung tuyến của BC )
AB=ACAB=AC ( ΔABCΔABC cân tại A )
Do đó : ΔAHB=ΔAHC(c−c−c)ΔAHB=ΔAHC(c−c−c)
⇒AHBˆ=AHCˆ⇒AHB^=AHC^ ( hai góc tương ứng )
Mà AHBˆ+AHCˆ=180oAHB^+AHC^=180o ( hai góc kề bù )
⇒AHBˆ=AHCˆ=180o2=90o⇒AHB^=AHC^=180o2=90o
Xét ΔAHEΔAHE và ΔHEDΔHED có :
HEHE chung
HA=HDHA=HD ( HE là đường trung tuyến của AD )
AHEˆ=DHEˆ(=90o)AHE^=DHE^(=90o)
Do đó : ΔAHE=ΔDHEΔAHE=ΔDHE ( hai cạnh góc vuông )
⇒AEHˆ=DEHˆ⇒AEH^=DEH^ ( góc tương ứng ) (*)
Vì C là trọng tâm của ΔAEDΔAED ⇒AM⇒AM là đường trung tuyến của DE )
⇒DM=ME⇒DM=ME
Xét ΔHEDΔHED vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE
⇒HM=DM⇒HM=DM (1)
Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DEHM=12DE. Mà 12DE=DM12DE=DM⇒HM=DM⇒HM=DM
Trở lại vào bài :
Mặt khác DM=ME(cmt)DM=ME(cmt)(2)
Từ (1) và (2) ⇒HM=ME⇒HM=ME
⇒ΔHME⇒ΔHME cân tại M
⇒MHEˆ=MEHˆ⇒MHE^=MEH^
Dễ thấy MEHˆ=HEAˆ(cmt)MEH^=HEA^(cmt) ở cái (*)
⇒MHEˆ=HEAˆ⇒MHE^=HEA^
mà hai góc này ở vị trí so le trong
⇒HM⇒HM//AEAE (đpcm)
1.
a) Xét ΔADE có :
HE là đường trung tuyến của AD HA=HD )(1)
Ta thấy HC=12BC ( AH là đường trung tuyến của BC )
Mà BC = CE (gt )
⇒HC=12CE (2)
Từ (1) và (2) ⇒C là trọng tâm của ΔADE
b) Hơi khó đấy :)
Xét ΔAHB và ΔAHC có :
HAHA chung
HB=HC ( AH là đường trung tuyến của BC )
AB=AC( ΔABC cân tại A )
Do đó : ΔAHB=ΔAHC(c−c−c)
⇒AHBˆ=AHCˆ( hai góc tương ứng )
Mà AHBˆ+AHCˆ=1800
⇒AHB^=AHC^=1800/2=90o
Xét ΔAHEvà ΔHED có :
HEHE chung
HA=HD( HE là đường trung tuyến của AD )
AHEˆ=DHEˆ(=900)
Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )
⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)
Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )
Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE
⇒HM=DM (1)
Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM
Trở lại vào bài :
Mặt khác DM=ME(cmt)(2)
Từ (1) và (2) ⇒HM=ME
⇒ΔHME⇒ΔHME cân tại M
⇒MHEˆ=MEHˆ
Dễ thấy MEHˆ=HEAˆ(cmt)
⇒MHEˆ=HEAˆ
mà hai góc này ở vị trí so le trong
⇒HM⇒HM//AE(đpcm)
ABCI
a) Xét tam giác ABC và tam giác DMC có :
BC = CM ( GT )
Góc ACB = góc MCD ( 2 góc đối đỉnh (
AC = CD ( GT )
=> tam giác ABC = tam giác DMC ( c - g - c )
b) Theo ý a , ta có : tam giác ABC = tam giác DMC
=> Góc BAD = góc ADM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> MD // AB ( dấu hiệu )
c) Nghĩ nốt đã
a, Xét Δ EHA và Δ EHD, có :
\(\widehat{EHA}=\widehat{EHD}=90^o\)
HA = HD (gt)
EH là cạnh chung
=> Δ EHA = Δ EHD (c.g.c)
=> EA = ED
a) Vì AH = HD => EH là đg trung tuyến của tg ADE
Khi đó C thuộc đg trung tuyến EH (1)
Do tg ABC cân tại A
mà AH là đg cao của tg ABC
=> AH là đg trung trực của tg ABC
=> BH = CH
=> BH = CH = 1/2 BC
Lại do BC = CE
=> CH = 1/2 CE
hay CE = 2/3 EH (2)
Từ (1); (2) => C là trọng tâm tg ADE.
Bạn tham khảo tại đây nhé: Câu hỏi của Huyền Anh Kute.
Chúc bạn học tốt!