Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) \(đkxd:x\ne2;x\ne-2;x\ne0;x\ne3\)
Ta có: \(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(A=\left(\frac{\left(x+2\right)^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)
\(A=\left[\frac{x^2+4x+4+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\right]:\frac{x-3}{x\left(2-x\right)}\)
\(A=\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(A=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(A=\frac{4x^2}{x-3}\)
b) Ta có: \(4x^2>0\left(\forall x\ne0\right)\)
=> Để A>0 thì \(x-3>0\)
\(\Rightarrow x>3\)
Vậy với \(x>3\)thì A>0
c) Ta có: \(\left|x-7\right|=4\)\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=11\\x=3\end{cases}}\)
Mà theo điều kiện xác định, \(x\ne3\)
\(\Rightarrow x=11\)
Khi đó, \(A=\frac{4.11^2}{11-3}=\frac{121}{2}\)
Vậy \(A=\frac{121}{2}\)
Học tốt!!!!
a) ĐKXĐ : \(x\ne0;x\ne\pm2;x\ne3\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
Đặt \(B=\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\)
\(B=\frac{\left(x+2\right)\left(x+2\right)}{-\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}-\frac{\left(2-x\right)\left(x-2\right)}{\left(2+x\right)\left(x-2\right)}\)
\(B=\frac{-\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}-\frac{-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-\left(x+2\right)^2-4x^2--\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x^2-8x}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x}{x-2}\)
\(\Rightarrow A=\frac{-4x}{x-2}:\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(\Leftrightarrow A=\frac{-4x\cdot x^2\cdot\left(2-x\right)}{\left(x-2\right)\cdot x\cdot\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{4x^2\cdot x\cdot\left(x-2\right)}{\left(x-3\right)\cdot x\cdot\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{4x^2}{x-3}\)
b) \(\left|x-7\right|=4\)
\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => x = 11
\(\Leftrightarrow A=\frac{4\cdot11^2}{11-3}=\frac{121}{2}\)
c) \(A=\frac{4x^2}{x-3}\)
Để A dương thì hoặc cả tử và mẫu âm hoặc cả tử và mẫu dương
Dễ thấy \(4x^2\ge0\forall x\)
=> Để A dương thì x - 3 dương
hay x - 3 > 0
<=> x > 3
Vậy x > 3 thì A > 0
\(a,x\ne2;x\ne-2;x\ne0\)
\(b,A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\frac{6}{x+2}\)
\(=\frac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
\(=\frac{1}{2-x}\)
\(c,\)Để A > 0 thi \(\frac{1}{2-x}>0\Leftrightarrow2-x>0\Leftrightarrow x< 2\)
a,\(ĐKXĐ:\hept{\begin{cases}x\ne\mp2\\x\ne3\\x\ne0\end{cases}}\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(=\left[\frac{\left(x+2\right)^2}{\left(2-x\right)\left(x+2\right)}+\frac{4x^2}{\left(2-x\right)\left(x+2\right)}-\frac{\left(2-x\right)^2}{\left(2-x\right)\left(x+2\right)}\right]:\left[\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right]\)
\(=\frac{x^2+4x+4+4x^2-4+4x-x^2}{\left(2-x\right)\left(x+2\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(=\frac{4x\left(x+2\right)}{x+2}.\frac{x}{x-3}=\frac{4x^2}{x-3}\)
ĐKXĐ:\(x\ne\pm2;x\ne0;x\ne3\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
\(=\left[\frac{\left(2+x\right)^2}{\left(2-x\right)\left(2+x\right)}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right]:\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\frac{4+4x+x^2+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2-x\right)}{x-3}\)
\(=\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2-x\right)}{x-3}\)
\(=\frac{4x^2}{x-3}\)
b
Tại x=-2 thì biểu thức trên không xác định
Vậy A không xác định tại x=-2
c
\(A>0\Leftrightarrow\frac{4x^2}{x-3}>0\) mà \(4x^2>0\) ( nên nhớ là ĐKXĐ x khác 0 ) nên x-3 >0 hay x > 3
d
\(\left|x-7\right|=4\Leftrightarrow x-7=4\left(h\right)x-7=-4\)
\(\Leftrightarrow x=11\left(h\right)x=3\)
Loại trường hợp x=3 bạn thay x=11 vào tính tiếp nha !!!!!