\(\dfrac{x}{x-4}\)+\(\dfrac{1}{\sqrt{x}-2}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2022

a, đk x >= 0 ; x khác 4 

b, \(A=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

c, Ta có \(\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Rightarrow3\sqrt{x}=2-\sqrt{x}\Leftrightarrow4\sqrt{x}=2\Leftrightarrow x=\dfrac{1}{16}\)(tm)

7 tháng 10 2018

ĐKXĐ : \(x>0\)\(x\ne1\)

Câu a : \(P=\left(\dfrac{2-x}{x-\sqrt{x}}-\dfrac{1}{1-\sqrt{x}}+\dfrac{\sqrt{x}+1}{\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

\(=\left(\dfrac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{2-x+\sqrt{x}+x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

Câu b : Thay \(x=\dfrac{9}{16}\) vào P ta được :

\(P=\dfrac{\sqrt{\dfrac{9}{16}}-1}{\sqrt{\dfrac{9}{16}}}=\dfrac{\dfrac{3}{4}-1}{\dfrac{3}{4}}=\dfrac{\dfrac{-1}{4}}{\dfrac{3}{4}}=-\dfrac{1}{3}\)

Câu c : Để \(P< \dfrac{1}{2}\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}< \dfrac{1}{2}\)

\(\Leftrightarrow2\sqrt{x}-2< \sqrt{x}\)

\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)

8 tháng 9 2018

Mọi ngươi giúp em với ạ chứ em làm câu a Bài 1 và 2 ra kết quả dài quá :(

Bài 1: 

a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Để P<1 thì P-1<0

\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)

=>căn a-2>0

=>a>4

1 tháng 11 2017

a,ĐK:x≠4;x>0

b,A=(\(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\))*\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

=\(\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)*\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

Để A>\(\dfrac{1}{2}\)thì\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)>\(\dfrac{1}{2}\)

\(\dfrac{\sqrt{x}-4}{2\sqrt{x}}\)>0

\(\sqrt{x}-4>0\left(2\sqrt{x}>0\right)\)

⇔ x>16(tm)

Để A>\(\dfrac{1}{2}\)thì 0<x>16và x≠4

1: Khi x=64 thì \(A=\dfrac{8+2}{8}=\dfrac{5}{4}\)

2: \(B=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

2 tháng 1 2019

1.

a) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{4-2.2.\sqrt{2}+2}+\sqrt{8-2.2\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}+\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}.1+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|+\left|2\sqrt{2}-1\right|=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)

b) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}=\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)

c) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\dfrac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2013}+\sqrt{2014}\right)}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\left(\sqrt{2013}+\sqrt{2014}\right)+\sqrt{2014}+\sqrt{2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\)

2.

a) \(x^2-2\sqrt{5}x+5=0\Leftrightarrow x^2-2.x.\sqrt{5}+\left(\sqrt{5}\right)^2=0\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\Leftrightarrow x-\sqrt{5}=0\Leftrightarrow x=\sqrt{5}\)Vậy S={\(\sqrt{5}\)}

b) ĐK:x\(\ge-3\)

\(\sqrt{x+3}=1\Leftrightarrow\left(\sqrt{x+3}\right)^2=1^2\Leftrightarrow x+3=1\Leftrightarrow x=-2\left(tm\right)\)

Vậy S={-2}

3.

a) \(A=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b) Ta có \(A=x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow A\ge\dfrac{3}{4}\)

Dấu bằng xảy ra khi x=\(\dfrac{1}{4}\)

Vậy GTNN của A=\(\dfrac{3}{4}\)

19 tháng 3 2021

a/ \(P=12\)

b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )

19 tháng 3 2021

a. Thay x = 3 vào biểu thức P ta được :

\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)

b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

c, Ta có :

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)

Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)

22 tháng 9 2018

....

a: \(P=\left(\dfrac{x-1}{2\sqrt{x}}\right)^2\cdot\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\)

\(=\dfrac{\left(x-1\right)^2}{4x}\cdot\dfrac{-4\sqrt{x}}{x-1}=\dfrac{-\left(x-1\right)}{\sqrt{x}}\)

b: Khi \(x=4+2\sqrt{3}\) thì \(P=\dfrac{-\left(4+2\sqrt{3}-1\right)}{\sqrt{3}+1}=\dfrac{-\left(3+2\sqrt{3}\right)}{\sqrt{3}+1}=\dfrac{-3-\sqrt{3}}{2}\)

c: Để P<0 thì -(x-1)<0

=>x-1>0

=>x>1

2 tháng 9 2018

a) điều kiện xác định : \(x\ge0;x\ne1\)

ta có : \(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(\Leftrightarrow P=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(\Leftrightarrow P=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(2-5\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) b) ta có : \(P=\dfrac{1}{2}\Leftrightarrow\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{1}{2}\) \(\Leftrightarrow4-10\sqrt{x}=\sqrt{x}+3\)

\(\Leftrightarrow11\sqrt{x}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{11}\Leftrightarrow x=\dfrac{1}{121}\)

c) ta có : \(P-\dfrac{2}{3}\Leftrightarrow\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}-\dfrac{2}{3}=\dfrac{2-5\sqrt{x}-\dfrac{2}{3}\sqrt{x}-2}{\sqrt{x}+3}\)

\(=\dfrac{\dfrac{-17}{3}\sqrt{x}}{\sqrt{x}+3}\le0\) \(\Rightarrow P-\dfrac{2}{3}\le0\Leftrightarrow P\le\dfrac{2}{3}\left(đpcm\right)\)

2 tháng 9 2018

Sai rồi bạn ạ

9 tháng 10 2018

Điều kiện để biểu thức có nghĩa là:

1) 5x - 10 ≥ 0

⇔ 5x ≥ 10

⇔ x ≥ 2.

2) 1 + x\(^2\) > 1 ∀ x

⇒ Luôn có nghĩa với mọi giá trị x

3) 3 - x ≥ 0 và 2 - x > 0

⇔ x < 3 và x < 2

⇔ x < 2

4) - 1 + x > 0

⇔ x > 1.