K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

a ĐKXĐ \(a\ge0,a\ne\dfrac{1}{4},a\ne1\)

\(\Rightarrow P=1+\left(\dfrac{\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(1+\left(\dfrac{\left(-1\right)\left(2\sqrt{a}-1\right)}{\sqrt{a}-1}+\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{2\sqrt{a}-1}\)

\(1+\left(-1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{a+\sqrt{a}+1}\right)\sqrt{a}\)

\(1-\sqrt{a}+\dfrac{a\sqrt{a}+a}{a+\sqrt{a}+1}\) = \(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)+a\sqrt{a}+a}{a+\sqrt{a}+1}=\dfrac{1-a\sqrt{a}+a\sqrt{a}+a}{a+\sqrt{a}+1}=\dfrac{a+1}{a+\sqrt{a}+1}\)

b Xét hiệu \(P-\dfrac{2}{3}=\dfrac{a+1}{a+\sqrt{a}+1}-\dfrac{2}{3}=\dfrac{3a+3-2a-2\sqrt{a}-2}{a+\sqrt{a}+1}=\dfrac{a-2\sqrt{a}+1}{a+\sqrt{a}+1}=\dfrac{\left(\sqrt{a}-1\right)^2}{a+\sqrt{a}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\) \(\Rightarrow P>\dfrac{2}{3}\) 

c Ta có \(P=\dfrac{\sqrt{6}}{\sqrt{6}+1}\Rightarrow\dfrac{a+1}{a+\sqrt{a}+1}=\dfrac{\sqrt{6}}{\sqrt{6}+1}\) \(\Rightarrow\left(a+1\right)\left(\sqrt{6}+1\right)=\sqrt{6}\left(a+\sqrt{a}+1\right)\Leftrightarrow a\sqrt{6}+a+\sqrt{6}+1=a\sqrt{6}+\sqrt{6a}+\sqrt{6}\)

\(\Leftrightarrow a-\sqrt{6a}+1=0\Leftrightarrow a-\sqrt{6a}+\dfrac{6}{4}-\dfrac{2}{4}=0\Leftrightarrow\left(\sqrt{a}-\dfrac{\sqrt{6}}{2}\right)^2=\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{a}=\dfrac{\sqrt{6}+1}{2}\\\sqrt{a}=\dfrac{1-\sqrt{6}}{2}\left(L\right)\end{matrix}\right.\) (Do \(\sqrt{a}\ge0\))  \(\Rightarrow a=\dfrac{\left(\sqrt{6}+1\right)^2}{4}=\dfrac{7+2\sqrt{6}}{4}\left(TM\right)\) 

Vậy...

1 tháng 8 2019

a) \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}-1+1\)

\(=\frac{a^2-\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}\)

b) \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}=2\)

\(\Leftrightarrow a^2+\sqrt{a}.\left(a-\sqrt{a}+1\right)-2\sqrt{a}.\left(a-\sqrt{a}+1\right)=2\left(a-\sqrt{a}+1\right)\)

\(\Leftrightarrow a^2-2\sqrt{a}.a+2a-\sqrt{a}-2a=2a-2\sqrt{a}+2\)

\(\Leftrightarrow a^2-2\sqrt{a}.a+2a-\sqrt{a}-2a=-2\sqrt{a}+2\)

\(\Leftrightarrow-2\sqrt{a}.a+2a-\sqrt{a}-2a=-2\sqrt{a}+2-a^2\)

\(\Leftrightarrow-2\sqrt{a}.a-\sqrt{a}=-2\sqrt{a}+2-a^2\)

\(\Leftrightarrow-2a\sqrt{a}+\sqrt{a}=2-a^2\)

\(\Leftrightarrow\sqrt{a}.\left(2a+1\right)=2-a^2\)

\(\Leftrightarrow\left[\sqrt{a}.\left(2a+1\right)\right]^2=\left(2-a^2\right)^2\)

\(\Leftrightarrow4a^3-4a^2+a=4-4a^2+a^4\)

\(\Leftrightarrow\orbr{\begin{cases}a=4\left(\text{thỏa mãn}\right)\\a=1\left(\text{loại}\right)\end{cases}}\)

=> a = 4

1 tháng 8 2019

Cách ngắn hơn :

\(đkxđ\Leftrightarrow x\ge0\)

\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}\)\(-2\sqrt{a}-1+1\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}\)

\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)

\(b,A=2\Rightarrow a-\sqrt{a}=2\)

\(\Rightarrow a-\sqrt{a}-2=0\)

\(\Rightarrow a+\sqrt{a}-2\sqrt{a}-2=0\)

\(\Rightarrow\sqrt{a}\left(\sqrt{a}+1\right)-2\left(\sqrt{a}+1\right)=0\)

\(\Rightarrow\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=2\\\sqrt{a}=-1\end{cases}\Rightarrow\orbr{\begin{cases}a=4\\a\in\varnothing\end{cases}}}\)

\(\Rightarrow a=4\)

\(c,A=a-\sqrt{a}=\sqrt{a}^2-2.\sqrt{a}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)

\(=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\)

\(\Rightarrow A_{min}=-\frac{1}{4}\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\sqrt{a}=\frac{1}{2}\Rightarrow a=\frac{1}{4}\)

Vậy với \(a=\frac{1}{4}\)thì A có giá trị nhỏ nhất là \(-\frac{1}{4}\)

26 tháng 5 2022

loading...  

31 tháng 8 2016

a) \(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\left(ĐK:a\ge0\right)\)

\(=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

b) Để A=2 \(\Leftrightarrow a-\sqrt{a}=2\)

                  \(\Leftrightarrow a-\sqrt{a}-2=0\)

                   \(\Leftrightarrow\left(\sqrt{a}+1\right)\left(\sqrt{a}-2\right)=0\)

                   \(\Leftrightarrow\sqrt{a}-2=0\left(Vì\sqrt{a}+1\ne0\right)\)

                   \(\Leftrightarrow a=4\) (TM)

Vậy a=4 thì A=2

c) \(A=a-\sqrt{a}=a-\sqrt{a}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\)

Vì: \(\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\)

=> \(\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN của A là \(-\frac{1}{4}\) khi \(a=\frac{1}{4}\)

31 tháng 8 2016

hay nhở

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

17 tháng 5 2021

1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)

Thay \(x=\frac{1}{9}\) vào A ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)

2. \(B=...\)

    \(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

    \(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

     \(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{\sqrt{x}+3}{-6}\)

Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)

hay \(P\le-\frac{1}{2}\)

Dấu "=" xảy ra <=> x=0

17 tháng 5 2021

toán lớp 9 khó zậy em đọc k hỉu 1 phân số

6 tháng 2 2022

a) \(P=\dfrac{\sqrt{a}\left[\left(\sqrt{a}\right)^3+1\right]}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(P=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(P=\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)

\(P=a+\sqrt{a}-2\sqrt{a}-1+1\)

\(P=a-\sqrt{a}\)

b) Với a > 1 thì \(a>\sqrt{a}\) , do đó \(P=a-\sqrt{a}>0\), suy ra \(\left|P\right|=P\)

c) \(A=a-\sqrt{a}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Vậy A nhỏ nhất bằng \(-\dfrac{1}{4}\) khi cà chỉ khi \(\sqrt{a}=\dfrac{1}{2}\) hay \(a=\dfrac{1}{4}\)

a: \(P=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1=a-\sqrt{a}\)

b: a>1 nên P>0

\(\Leftrightarrow P=\left|P\right|\)

25 tháng 10 2018

a)ĐK : a > 0

A = \(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

= \(a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

26 tháng 10 2022

b: ĐểA=2 thì a-căn a-2=0

=>a-2 căn a+căn a-2=0

=>căn a-2=0

=>a=4

c: \(A=a-\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}>=-\dfrac{1}{4}\)

Dấu = xảy ra khi a=1/4

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm