Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+3^3+...+3^{120}\)
\(\Rightarrow3A=3\left(3+3^2+3^3+...+3^{100}\right)\)
\(3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow2A+3=3^{101}-3+3=3^{101}=3^n\)
\(\Rightarrow n=101\)
vậy ...
\(3A=3^2+3^3+...+3^{121}\)
\(3A-A=\left(3^2-3^2\right)+........+\left(3^{120}-3^{120}\right)+3^{121}-3\)
A = \(\frac{3^{121}-3}{2}\)
2A + 3 = \(\frac{3^{121}-3}{2}.2+3=3^{121}=3^n\)
Vậy n = 121
\(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2013}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\)
\(\Rightarrow3B=3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\right)\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2012}}\)
\(\Rightarrow3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2012}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\right)\)
\(\Rightarrow2B=1-\frac{1}{3^{2013}}\Rightarrow1-2B=\frac{1}{3^{2013}}=\left(\frac{1}{3}\right)^{2013}\Rightarrow n=2013\)
Ta có :
3n + 1 chia hết cho 2n + 3
=> \(2\cdot\left(3n+1\right)=6n+2\)chia hết cho 2n + 3.
Mà : \(3\cdot\left(2n+3\right)=6n+9\)chia hết cho 2n + 3.
=> \(\left(6n+2\right)-\left(6n+9\right)\)chia hết cho 2n + 3.
=> \(-7\) chia hết cho 2n + 3
=> \(2n+3\in\left\{-7;-1;1;7\right\}\)
=> \(2n\in\left\{-10;-4;-2;4\right\}\)
=> \(n\in\left\{-5;-2;-1;2\right\}\)