K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2015

trả lời câu c nha

A=3+3^2 +3^+...+3^99+3^100

3A=3^2+3^3+...+3^100+3^101

3A-A=2A=3^101-3

Do đó 2A+3=3^101.Theo đề bài,2A+3=3^x

Vậy x=101

 

^ là mụ nha

 

4 tháng 12 2015

d) Ta có A chia hết cho 3 

=> 2A chia hết cho 3 mà 3 cũng chia hết cho 3

=> 2A+3 chia hết cho A

10 tháng 4 2022

a, A=31+32+33+...+32006

3A=32+33+...+32006+32007

3A-A=(32+33+...+32006+32007)-(31+32+33+...+32006)

2A=32007-3

A=(32007-3)/2

b, 2A=32007-3

2A+3=32007

Hay 3x=32007

=>x=2007

24 tháng 3 2018

Bạn có thể dựa theo bài này

https://olm.vn/hoi-dap/question/84156.html

Bạn sao chép rồi làm nha

Tk mk nha

24 tháng 3 2018

https://olm.vn/hoi-dap/question/84156.html

Bạn dựa theo câu hỏi này nha

Tk mk nha

a: \(A=\dfrac{a^3+a^2+a^2-1}{a^3+1+2a^2+2a}\)

\(=\dfrac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)

\(=\dfrac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\dfrac{a^2+a-1}{a^2+a+1}\)

b: Gọi \(d=UCLN\left(a^2+a-1;a^2+a+1\right)\)

\(\Leftrightarrow a^2+a-1-a^2-a-1⋮d\)

\(\Leftrightarrow-2⋮d\)

mà \(a^2+a+1⋮2̸\)(do a2+a=a(a+1) chia hết cho 2)

nên d=1

=>A là phân số tối giản

DD
27 tháng 5 2021

a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b) \(A=\frac{a\left(a+1\right)-1}{a\left(a+1\right)+1}\)

Với \(a\)nguyên thì \(a\left(a+1\right)\)là tích hai số nguyên liên tiếp nên là số chẵn, do đó \(a\left(a+1\right)-1,a\left(a+1\right)+1\)là hai số lẻ liên tiếp. Do đó \(A\)là phân số tối giản. 

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

4 tháng 2 2019

cái này rất dễ mình tin bạn có thể giải được mà

27 tháng 2 2015

phân số nên mik k viết đc

12 tháng 2 2018

 a) \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}\)

\(=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)

\(=\frac{\left(a+1\right)\left[a^2+a-1\right]}{\left(a+1\right)\left[a^2+a+1\right]}=\frac{a^2+a-1}{a^2+a+1}\)

b) Để phân số \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2+a-1}{a^2+a+1}\)

\(=\frac{\left(a^2+a+1\right)-2}{a^2+a+1}=1-\frac{2}{a^2+a+1}\)

Để phân số \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)tối giản là \(\frac{2}{a^2+a+1}\) tối giản

=> ƯCLN(2.a2+a+1)=d  \(\Rightarrow2⋮d\)

  • \(d=\pm1\)
  • \(d=\pm2\)(loại) vì d là phân số tối giản

TH1: Nếu d=1  => a2+a+1=1

                       => a2+a=0

                       => a(a+1)=0   => a=0; a=-1

TH2: Nếu d=-1  => a2+a-1=-1

                        => a2+a+2=0   (không xảy ra)

Vậy d=1

11 tháng 4 2018

D = 1 nha bạn