K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

\(f\left(2\right)=6\Rightarrow4a+2b+4=6\Rightarrow4a+2b=2\)(1)

\(f\left(1\right)=0\Rightarrow a+b+4=0\Rightarrow a+b=-4\)

\(\Rightarrow2a+2b=-8\)(2)

Lấy (1) - (2), ta được: \(2a=10\Rightarrow a=5\)

Suy ra b = -2

4 tháng 3 2020

b=-9 nha ,nhầm

4 tháng 12 2021

\(a,ĐK:x>0;x\ne1;x\ne4\\ b,P=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\\ P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

4 tháng 12 2021

cảm ơn ạ

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.

23 tháng 10 2023

A, B đâu em?

17 tháng 10 2016

TXĐ \(\sqrt{x}\)lớn hơn hoặc bằng 0=>x lớn hơn hoặc bằng 0

A=\(\sqrt{x}\)-\(\sqrt{x^2-4x+4}\)=\(\sqrt{x}\)-\(\sqrt{\left(x-2\right)^2}\)=\(\sqrt{x}\)-x+2

A=-(x-\(\sqrt{x}\)-2)=-(\(\sqrt{x}\)-2)(\(\sqrt[]{x}\)+1)

\(Đk:x\ge0\)

b) \(\sqrt{x}-\sqrt{x^2-4x+4}\)

\(=\sqrt{x}-\sqrt{\left(x-2\right)^2}\)

\(=\sqrt{x}-\left|x-2\right|\left(1\right)\)

Th1 : \(x-2\ge0\)

PT ( 1 ) \(=\sqrt{x}-x+2\)

Th2 : \(x-2< 0\)

PT ( 1 ) \(=\sqrt{x}-2+x\)

8 tháng 4 2021

Trả lời:

a. rút gọn biểu thức A.B:

A= 3\(\sqrt{7}\)-2\(\sqrt{7}\)+5\(\sqrt{7}\)-3=-3

B= \(\sqrt{x}\)-1 + \(\sqrt{x}\)=2\(\sqrt{x}\)-1

b. Tìm x để A=3B

ta có:

A=-3= 3 (2\(\sqrt{x}\)-1)

=> -3= 6\(\sqrt{x}\)-3

=> \(\sqrt{x}\)=0

Vậy x=0 thì A=3B

a: \(P=\left(\dfrac{1}{m\left(m-1\right)}+\dfrac{1}{m-1}\right)\cdot\dfrac{\left(m-1\right)^2}{m+1}\)

\(=\dfrac{m+1}{m\left(m-1\right)}\cdot\dfrac{\left(m-1\right)^2}{m+1}=\dfrac{m-1}{m}\)

b: Khi m=1/2 thì \(P=\left(\dfrac{1}{2}-1\right):\dfrac{1}{2}=\dfrac{-1}{2}\cdot2=-1\)

2 tháng 7 2019

ĐKXĐ : \(x\in R\)

a) \(A=6x-1+\sqrt{x^2-4x+4}\)

\(A=6x-1+\sqrt{\left(x-2\right)^2}\)

\(A=6x-1+\left|x-2\right|\)

b) Khi \(x=5\)ta có \(A=6\cdot5-1+\left|5-2\right|=32\)

c) \(A=1\)

\(\Leftrightarrow6x-1+\left|x-2\right|=1\)

\(\Leftrightarrow\left|x-2\right|=2-6x\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow x-2=2-6x\)

\(\Leftrightarrow7x=4\)

\(\Leftrightarrow x=\frac{4}{7}\)( không thỏa )

+) Xét \(x< 2\)

\(pt\Leftrightarrow x-2=6x-2\)

\(\Leftrightarrow-5x=0\)

\(\Leftrightarrow x=0\)( thỏa )

Vậy....

7 tháng 6 2021

ĐK: \(\left\{{}\begin{matrix}x-2\sqrt{x}-3\ne0\\\sqrt{x}+1\ne0\\3-\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)\ne0\\\sqrt{x}+1\ne0\left(hiển-nhiên\right)\\x\ne\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow x\ne\sqrt{3}\)

\(P=\dfrac{x\sqrt{x}-3}{x-2\sqrt[]{x}-3}-\dfrac{2\left(\sqrt{x-3}\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)

\(\Leftrightarrow\dfrac{x\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(-\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow\dfrac{x\sqrt{x}-3-2\left(x-9\right)-x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x+1}\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow\dfrac{\left(x-4\right)\sqrt{x}-3x+12}{\left(\sqrt{x+1}\right)\left(\sqrt{x}-3\right)}\)

Chúc bạn học tốt ^^

7 tháng 6 2021

Không thấy câu b =))

\(x=14-6\sqrt{5}=\left(3+\sqrt{5}\right)^2\)

\(\Rightarrow\sqrt{x}=3+\sqrt{5}\)

Thay vào ta được

\(\dfrac{14-6\sqrt{5}-3\left(14-6\sqrt{5}\right)+12}{\left(3+\sqrt{5}+1\right)\left(3+\sqrt{5}-3\right)}\)

\(=\dfrac{12\sqrt{5}-16}{\left(4+\sqrt{5}\right)\sqrt{5}}=\dfrac{12\sqrt{5}-16}{4\sqrt{5}+5}\)

10 tháng 2 2019