Cho biểu thức P = \frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{3}{{...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

Do \frac{1}{{{n^2}}} < \frac{1}{{{n^2} - 1}} với mọi n ≥ 2 nên 

A < C = \frac{1}{{{2^2} - 1}} + \frac{1}{{{3^2} - 1}} + ... + \frac{1}{{{n^2} - 1}}

Mặt khác:

\begin{matrix} C = \dfrac{1}{{1.3}} + \dfrac{1}{{2.4}} + \dfrac{1}{{3.5}} + ... + \dfrac{1}{{\left( {n - 1} \right)\left( {n + 1} \right)}} \hfill \\ C = \dfrac{1}{2}\left( {\dfrac{1}{1} - \dfrac{1}{3} + \dfrac{1}{2} - \dfrac{1}{4} + \dfrac{1}{3} - \dfrac{1}{5} + ... + \dfrac{1}{{n - 1}} - \dfrac{1}{{n + 1}}} \right) \hfill \\ C = - \left( {1 + \dfrac{1}{2} - \dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right) < \dfrac{1}{2}.\dfrac{3}{2} = \dfrac{3}{4} < 1 \hfill \\ \end{matrix}

Vậy A < 1

25 tháng 5 2021

b.

\begin{matrix} B = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{{\left( {2n} \right)}^2}}} \hfill \\ B = \dfrac{1}{{{2^2}}}\left( {1 + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + .... + \dfrac{1}{{{n^2}}}} \right) \hfill \\ B = \dfrac{1}{{{2^2}}}\left( {1 + A} \right) \hfill \\ \end{matrix}

\(\Rightarrow P< 0,5\)

NM
1 tháng 9 2021

ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) Vậy A<1

b. \(4B=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}=1+A< 2\Rightarrow B< 0.5\)

6 tháng 7 2024

Đề bài bị lỗi rồi em nhé. 

25 tháng 7 2021

a, Ta có: \(\frac{a}{c}\)\(\frac{c}{b}\)\(\Rightarrow\)\(ab\)\(c^2\)

Để chứng minh \(\frac{a^2+c^2}{b^2+c^2}\)\(\frac{a}{b}\)thì ta phải chứng minh b(a2+c2)=a(b2+c2)

Ta có: b(a2+c2)= b.a2+b.c(1)

Thay ab= c2 vào 1 ta có:

b.a2+b.a.b= b2.a+a2.bb

Ta có: a(b2+c2) = a.b2+a.c2 (2)

Thay ab= c2 vào (1) ta có:

a.b2+b.a.a= b2.a+a2.bb

Vì b2.a+a2.b= b2.a+a2.b \(\Rightarrow\)b(a2+c2)= a(b2+c2)

\(\Rightarrow\)\(\frac{a^2+c^2}{b^2+c^2}\)\(\frac{a}{b}\)

\(\Rightarrow\)Đpcm (Điều phải chứng minh)

Chúc bn học tốt

25 tháng 7 2021

a.

\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a.\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)

b.

\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{\left(b^2-ab\right)+\left(ab-a^2\right)}{a\left(a+b\right)}=\frac{b\left(b-a\right)+a\left(b-a\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)

16 tháng 11 2021

Bài 3

a, \(|x+\frac{7}{3}|\ge|-3,5|\)

\(\Rightarrow|x+\frac{7}{3}|\ge3,5\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{3}\ge3,5\\x+\frac{7}{3}\le-3,5\end{cases}\Rightarrow\orbr{\begin{cases}x\ge\frac{7}{6}\\x\le-\frac{35}{6}\end{cases}}}\)

Vậy .....

b,\(|x-1|\le3\frac{1}{4}\)

\(\Rightarrow|x-1|\le\frac{13}{4}\)\(\Rightarrow\orbr{\begin{cases}x-1\le\frac{13}{4}\\x-1\ge-\frac{13}{4}\end{cases}\Rightarrow\orbr{\begin{cases}x\le\frac{17}{4}\\x\ge-\frac{9}{4}\end{cases}}}\)

Vậy ....

Bài 4 :

Vì \(|2x-\frac{1}{3}|\ge0\forall x\Rightarrow|2x-\frac{1}{3}|-1\frac{3}{4}\ge-1\frac{3}{4}\)

Dấu "=" sảy ra <=> \(2x-\frac{1}{3}=0\Leftrightarrow2x=\frac{1}{3}\Leftrightarrow x=\frac{1}{6}\)

Vậy .....

Bài 5

B = \(\frac{1}{3+\frac{1}{2}.|2x-3|}=\frac{1}{3+|x-1,5|}\)

mà \(|x-1,5|\ge0\forall x\Rightarrow3+|x-1,5|\ge3\forall x\)

\(\Rightarrow B\le\frac{1}{3}\)

Dấu "=" sảy ra <=> x - 1,5= 0 <=> x = 1,5

Vậy .....

Học tốt 

có bài  nào hay ib mk ha

#Gấu

Câu 11: Tính: 3 1/4 + 2 1/6 - 1 1/4 - 4 5/6 = ?A. -5/6                             B. -2/3                      C. 3/8                          D. 3/2Câu 12: Tìm n ϵ N, biết 2n+2 + 2n = 20, kết quả là:A. n = 4                           B. n = 1                     C. n = 3                      D. n = 2Câu 13: Trong các số sau số nào là nghiệm thực của đa thức: P(x) = x2 –x - 6A. 1 ...
Đọc tiếp

Câu 11: Tính: 3 1/4 + 2 1/6 - 1 1/4 - 4 5/6 = ?

A. -5/6                             B. -2/3                      C. 3/8                          D. 3/2

Câu 12: Tìm n ϵ N, biết 2n+2 + 2n = 20, kết quả là:

A. n = 4                           B. n = 1                     C. n = 3                      D. n = 2

Câu 13: Trong các số sau số nào là nghiệm thực của đa thức: P(x) = x2 –x - 6

A. 1                                 B. -2                            C. 0                           D. -6

Câu 14: Tìm n ϵ N, biết 4n/3n = 64/27, kết quả là:

A. n = 2                           B. n = 3                       C. n = 1                      D. n = 0

Câu 15: Tính (155 : 55).(35 : 65)

A. 243/32                        B. 39/32                      C. 32/405                   D. 503/32

Câu 16: Cho tam giác ABC cân tại A, có \widehat{A}=70^0. Số đo góc \widehat{B} là:

A. 50^0B. 60^0C. 55^0D. 75^0

Câu 17: Bộ ba nào trong số các bộ ba sau không phải là độ dài ba cạnh của tam giác.

A. 6cm; 8cm; 10cm
B. 5cm; 7cm; 13cm
C. 2,5cm; 3,5cm; 4,5cm
D. 5cm; 5cm; 8cm
Câu 18: Tìm x, biết: \frac{-8}{11}.x=\frac{2}{5}.\frac{1}{4}

A. x=\frac{15}{80}B. x=-\frac{2}{75}C. x=\frac{11}{90}D. x=-\frac{11}{80}

Câu 19: Giá trị có tần số lớn nhất được gọi là:

A. Mốt của dấu hiệu
B. Tần số của giá trị đó
C. Số trung bình cộng
D. Số các giá trị của dấu hiệu

Câu 20: Hệ số cao nhất và hệ số tự do của đa thức

P(x) = -x^4 + 3x^2 + 2x^4 - x^2 + x^3 - 3x^3 lần lượt là:

A. 1 và 2
B. 2 và 0
C. 1 và 0
D. 2 va 1
Câu 21: Cho đa thức P(x) = \frac{1}{2}x^3 – 4x^2 -5x^3 + x^2 + 5x – 1.

Tìm đa thức Q(x) biết P(x) + Q(x) = x^3 + x^2 + x - 1 kết quả là:

A. \frac{3}{2}{{x}^{3}}+4{{x}^{2}}-4x-7B. \frac{1}{2}{{x}^{3}}+2{{x}^{2}}+4x-1
C. \frac{1}{2}{{x}^{3}}-2{{x}^{2}}-4x+1D. \frac{3}{2}{{x}^{3}}+4{{x}^{2}}+4x+7

Câu 22: Giá trị của x trong phép tính P(x) = x^2+1 là:

A. 0                               B. 0,5                     C. 1                          D. -1
Câu 23:

Để tìm nghiệm của đa thức , hai bạn Lý và Tuyết thực hiện như sau:

Lý : Ta có, với x = -1; P(-1) = -12 + 1 = -1 + 1 = 0.

Vậy x = -1 là nghiệm của đa thức P(x) = x2 + 1.

Tuyết : Ta có : x^2 \ge  0 \Rightarrow x^2 + 1 > 0

Vậy đa thức P(x) = x2 + 1 vô nghiệm.

Đánh giá bài làm của hai bạn:

A. Lý sai, Tuyết đúng
B. Lý đúng, Tuyết sai
C. Lý sai, Tuyết sai
D. Lý đúng, Tuyết đúng

Câu 24: Tính: 3,15\left( 3\frac{1}{4}:\frac{1}{2} \right)+2,15\left( 1-1\frac{1}{2} \right)=?

A. 19,25                      B. 19,4                  C. 16,4                          D. 18,25

Câu 26: Giá trị của đa thức C tại x = 2; y = -1 là:

A. -6                        B. 14                          C. 6                           D. -14

Câu 27: Trên mặt phẳng tọa độ Oxy lấy hai điểm: M (0; 4), N (3; 0). Diện tích của tam giác OMN là:

A. 12 (đvdt)               B. 5 (đvdt)                C. 6 (đvdt)                 D. 10 (đvdt)

Câu 28: Cho tam giác ABC vuông tại A, AB = 5cm, AC = 8cm. Độ dài cạnh BC là:

A. \sqrt{39}cm               B. 12cm                    C. 10cm                   D. \sqrt{89}cm
Câu 29: Tìm các số a, b, c biết a : b : c = 4 : 7 : 9 và a + b – c = 10, ta có kết quả

A. a = 12; b = 21; c = 27
B. a = 2; b = \frac{7}{2}; c = \frac{9}{2}
C. a = 20; b = 35; c = 45
D. a = 40; b = 70; c = 90

Câu 30: Thu gọn đơn thức -{{x}^{3}}{{\left( xy \right)}^{4}}\frac{1}{3}{{x}^{2}}{{y}^{3}}{{z}^{3}} kết quả là:

A. \frac{1}{3}{{x}^{8}}{{y}^{6}}{{z}^{3}}B. \frac{1}{3}{{x}^{9}}{{y}^{5}}{{z}^{4}}C. -3{{x}^{8}}{{y}^{4}}{{z}^{3}}

D. -\frac{1}{3}{{x}^{9}}{{y}^{7}}{{z}^{3}}

 

phần cuối nè

4
11 tháng 9 2021

Câu 11: Tính: 3 1/4 + 2 1/6 - 1 1/4 - 4 5/6 = ?

A. -5/6                             B. -2/3                      C. 3/8                          D. 3/2

Câu 12: Tìm n ϵ N, biết 2n+2 + 2n = 20, kết quả là:

A. n = 4                           B. n = 1                     C. n = 3                      D. n = 2

Câu 13: Trong các số sau số nào là nghiệm thực của đa thức: P(x) = x2 –x - 6

A. 1                                 B. -2                            C. 0                           D. -6

Câu 14: Tìm n ϵ N, biết 4n/3n = 64/27, kết quả là:

A. n = 2                           B. n = 3                       C. n = 1                      D. n = 0

Câu 15: Tính (155 : 55).(35 : 65)

A. 243/32                        B. 39/32                      C. 32/405                   D. 503/32

Câu 17: Bộ ba nào trong số các bộ ba sau không phải là độ dài ba cạnh của tam giác.

A. 6cm; 8cm; 10cm     B. 5cm; 7cm; 13cm      C. 2,5cm; 3,5cm; 4,5cm         D. 5cm; 5cm; 8cm

Câu 19: Giá trị có tần số lớn nhất được gọi là:

A. Mốt của dấu hiệuB. Tần số của giá trị đóC. Số trung bình cộngD. Số các giá trị của dấu hiệu

Câu 27: Trên mặt phẳng tọa độ Oxy lấy hai điểm: M (0; 4), N (3; 0). Diện tích của tam giác OMN là:

A. 12 (đvdt)               B. 5 (đvdt)                C. 6 (đvdt)                 D. 10 (đvdt)

Câu 28: Cho tam giác ABC vuông tại A, AB = 5cm, AC = 8cm. Độ dài cạnh BC là:

               B. 12cm                    C. 10cm             \(\sqrt{89}\)       

 Câu 29: Tìm các số a, b, c biết a : b : c = 4 : 7 : 9 và a + b – c = 10, ta có kết quả

A. a = 12; b = 21; c = 27     B. a = 2;           C. a = 20; b = 35; c = 45          D. a = 40; b = 70; c = 90

11 tháng 9 2021

iq .................. vô cực

NM
6 tháng 8 2021

ta có :

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\hept{\begin{cases}\frac{y}{x+y+z+t}< \frac{y}{y+z+t}< \frac{y+x}{x+y+z+t}\\\frac{z}{x+y+z+t}< \frac{z}{x+z+t}< \frac{z+y}{x+y+z+t}\\\frac{t}{x+y+z+t}< \frac{t}{x+y+t}< \frac{t+z}{x+y+z+t}\end{cases}}\)

Cộng lại ta có : \(1< M< 2\) Vậy M không phải số tự nhiên

6 tháng 8 2021

x,y,z,t thuộc N khác 0 nên x,y,z,t thuộc N sao 

=> x/x+y+z > 0

=> x/x+y+z > x/x+y+z+t

Tương tự : y/x+y+t > y/x+y+z+t

z/y+z+t > z/x+y+z+t

t/x+z+t > t/x+y+z+t

=> M > x+y+z+t/x+y+z+t = 1

Lại có : x < x+y+z => x/x+y+z < 1 => 0 < x/x+y+z < 1

=> x/x+y+z < x+t/x+y+z+t

Tương tự : y/x+y+t < y+z/x+y+z+t

z/y+z+t < z+x/x+y+z+t

t/x+z+t < t+y/x+y+z+t

=> M < 2x+2y+2z+2t/x+y+z+t = 2

Vậy 1 < M < 2 

=> M ko phải là số tự nhiên

Tk mk nha

26 tháng 6 2021

Trả lời:

B nha

Nhớ k cho mk nhé

~HT~