K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

liink:https://olm.vn/hoi-dap/question/675093.html

12 tháng 4 2018

Ta có \(y^4\ge0\)với mọi giá trị của x

=> \(y^4-2\ge0-2< 0\)với mọi giá trị của x

=> \(y^4-2\)vô nghiệm (đpcm)

2 tháng 5 2017

tại f(x) = x2 -x -x + 2 =0 ta có
x(x-1) -(x-1) +1 =0
(x-1)(x-1) +1 =0
(x-1)2 +1 =0          (1)
Vì (x-1)2 \(\ge\)0
nên \(\left(x-1\right)^2+1\ge1>0\)
Vậy (1) là vô lí
Do đó đa thức f(x) = x^2 -x -x +2 vô nghiệm 
 

\(x^2+2x+3=0\)

\(=>\hept{\begin{cases}x^2=0\\2x=0\\3=0\end{cases}}\)

\(=>\hept{\begin{cases}x=0\\x=0\\3\end{cases}=>0+0+3\ne0}\)

=> \(x^2+2x+3\)vô nghiệm

21 tháng 6 2016

\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)

Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\in R\)

\(\Rightarrow\left(x+1\right)^2+2\ge2>0\)với mọi \(x\in R\)

\(\Rightarrow x^2+2x+3>0\) với mọi \(x\in R\)

Vậy đa thức \(f\left(x\right)=x^2+2x+3\) vô nghiệm

26 tháng 3 2018

Áp dụng hằng đẳng thức đáng nhớ ta có :

x4+2x2+1=(x2+1)2

Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0

=>PT trên vô nghiệm

26 tháng 3 2018

Theo hằng đẳng thức đáng nhớ , ta có :

\(x^4+2x^2+1=\left(x^2+1\right)^2\)

Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)

\(\Rightarrow\left(x^2+1\right)^2>0\)

Vậy phương trình vô nghiệm.

4 tháng 4 2022

Ta có: 

\(\left(x-4\right)^2\ge0\)

\(\left(x+5\right)^2\ge0\)

\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi

\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn

=> đa thức vô nghiệm

4 tháng 4 2022

good job

tks you nhó 

27 tháng 6 2020

Bài làm:

Ta có: \(x^2-x+1=0\)

\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)(vô lý)

=> không tồn tại x thỏa mãn

=> Đa thức vô nghiệm

13 tháng 4 2016

có \(x^4+x^2\ge0\)

=> đa thức trên <0 

=> đt trên vô nghiệm

chú ý: đây là toán lớp 8 mà

:>> sáng hnay lm, cô ns : đây là cách giải lp ... cao hơn, nó cx nằm trog phần nâng cao lp 7

=>> cô ns : Giair đc thì càng tốt chứ sao (kaka)

\(-x^4-x^2-1=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

Suy ra : \(-t^2-t-1=0\)

Ta có : \(\left(-1\right)^2-4.\left(-1\right).\left(-1\right)=-3< 0\)

Vậy phương trình vô nghiệm 

16 tháng 6 2020

nâng cao lớp 7 ? rõ ràng đó là delta của lớp 9 =)) không có ý cà khịa :D

\(-x^4-x^2-1=\left(-x^4\right)+\left(-x^2\right)+\left(-1\right)\)

ta có : \(-x^4\le0\);\(-x^2\le0\);\(-1< 0\)

suy ra \(-x^4+\left(-x^2\right)+\left(-1\right)< 0\)

nên đa thức sau vô nghiệm 

11 tháng 5 2016

x^2 + 2x +2016 = x^2 + x + x + 1 +2015

                       = x ( x+1 ) + 1 ( x + 1 ) +2015 

                       = ( x + 1 ) ( x +1 ) + 2015

                       = ( x + 1 )^2 + 2015 

Xét (x + 1 )^2 + 2015 = 0 

=> ( x + 1 )^2 = - 2015        ( vô lí )

     vì ( x + 1 )^2 luôn lớn hơn hoặc bằng 0 với mọi x 

     vậy đa thức trên vô nghiệm  ( đúng ko các bạn ) 

Mọi người biết Trần Thu Hà như thế nào ko  :cướp nick  hu hu vừa mới cướp nick mình   

                                                         nói tục tiểu 

                                                   đi làm gian hồ 

                                           mình sẽ mét với online math luôn