Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(2x⋮x\Rightarrow-5⋮x\)
\(\Rightarrow x\inƯ\left(-5\right)=\left\{5;-5\right\}\)
Thì Mmin = 1
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
a) Ta có : \(x\ne1\)
Vì \(x\inℤ\Rightarrow\frac{3-x}{x-1}\inℤ\Leftrightarrow\hept{\begin{cases}3-x\inℤ\\x-1\inℤ\end{cases}}\)
Mà \(\frac{3-x}{x-1}=\frac{-x+3}{x-1}=\frac{-x+1+2}{x-1}=\frac{-\left(x-1\right)+2}{x-1}=-1+\frac{2}{x-1}\)
Lại có : \(-1\inℤ\Rightarrow E\inℤ\Leftrightarrow\frac{2}{x-1}\inℤ\Leftrightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)\)
\(\Rightarrow x-1\in\left\{\pm1;\pm2\right\}\)
Lập bảng xét 2 trường hợp ta có :
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) |
Vậy \(x\in\left\{2;0;3;-1\right\}\)