Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c làm tương tự, mẫu số nhân ra và nhóm lại theo dạng: x1+x2 và x1.x2
TOÁN HỌC
Toán lớp 2
Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 92.luyện tập (trang 96 sgk)
Bài 1: Số ?,Bài 2: Tính (theo mẫu),Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ? Bài 4: Viết số thích hợp vào ô trống (theo mẫu),Bài 5: Viết số thích hợp vào ô trống (theo mẫu):
- Lý thuyết, bài 1, bài 2, bài 3 tiết 93.bảng nhân 3 (trang 97sgk)
- Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 94.luyện tập (trang 98 sgk)
- Lý thuyết, bài 1, bài 2, bài 3 tiết 95. bảng nhân 4 (trang 99 sgk)
- Bài 1, bài 2, bài 3, bài 4 tiết 96.luyện tập (trang 100 sgk)
Xem thêm: CHƯƠNG V: PHÉP NHÂN VÀ PHÉP CHIA
Bài 1: Số ?
Bài 2: Tính (theo mẫu)
2cm x 3 = 6cm 2kg x 4 =
2cm x 5 = 2kg x 6 =
2dm x 8 = 2kg x 9 =
Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ?
Bài 4: Viết số thích hợp vào ô trống (theo mẫu):
Bài 5: Viết số thích hợp vào ô trống (theo mẫu):
Bài giải:
Bài 1:
Bài 2:
2cm x 3 = 6cm 2kg x 4 = 8kg
2cm x 5 = 10cm 2kg x 6 = 12kg
2dm x 8 = 16cm 2kg x 9 = 18kg
Bài 3:
Số bánh xe của 78 xe đạp là:
2 x 8 = 16 (bánh xe)
Đáp số: 16 bánh xe.
Bài 4: Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống còn lại là: 12, 18, 20, 14, 10, 16, 4.
Bài 5:
Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống các số là: 10, 14, 18, 20, 4.
Bài viết liên quan
Các bài khác cùng chuyên mục
- Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180 sgk toán lớp 2 (12/01)
- Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180,181 sgk toán lớp 2 (12/01)
- Bài 1, bài 2, bài 3, bài 4, bài 4 trang 177, 178 sgk toán lớp 2 (12/01)
- Bài 1, bài 2, bài 3, bài 4 trang 178,179 sgk toán lớp 2 (12/01)
- Bài 1, bài 2, bài 3, bài 4, bài 5 trang 181 sgk toán lớp 2 (12/01)
Xem thêm tại: http://loigiaihay.com/bai-1-bai-2-bai-3-bai-4-bai-5-tiet-92luyen-tap-c114a15865.html#ixzz4bgVSXCQi
ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:
x1 + x2 = \(\dfrac{-b}{a}\) = 6
x1x2 = \(\dfrac{c}{a}\) = 1
a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )
=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)
=> A2 = 1(6 + 2) = 8
=> A = 2\(\sqrt{3}\)
b) bạn sai đề
2.
a, Với m\(=1\Rightarrow x^2-x=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b. Ta có \(\Delta=b^2-4ac=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)
\(\Rightarrow\)phương trình luôn có 2 nghiệm \(x_1,x_2\)
c, Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)
A=\(\frac{2.x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=\frac{2.x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2+2x_1x_2}\)
\(=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}=\frac{\left(m^2+2\right)-\left(m^2-2m+1\right)}{m^2+2}\)
\(=1+\frac{-\left(m-1\right)^2}{m^2+2}\)
Ta thấy \(\frac{-\left(m-1\right)^2}{m^2+2}\le0\Rightarrow1+\frac{-\left(m-1\right)^2}{m^2+2}\le1\)
\(\Rightarrow MaxA=1\)
Dấu bằng xảy ra\(\Leftrightarrow\) \(m-1=0\Leftrightarrow m=1\)
\(2x^2+\left(2m-1\right)x+m-1=0\)
\(\Delta=\left(2m-1\right)^2-4.2\left(m-1\right)=4m^2-12m+5\)
Để phương trình đã cho có hai nghiệm phân biệt \(x_1,x_2\)thì \(\Delta\ge0\)
\(\Rightarrow4m^2-12m+5\ge0\Leftrightarrow\left(2m-5\right)\left(2m-1\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\le\frac{1}{2}\\m\ge\frac{5}{2}\end{cases}}\).
Khi phương trình có hai nghiệm phân biệt, theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\).
Ta có hệ: \(\hept{\begin{cases}3x_1-4x_2=11\\x_1+x_2=\frac{1-2m}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}3x_1-4x_2=11\\4x_1+4x_2=2-4m\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_2=\frac{-19-6m}{14}\end{cases}}\)
\(x_1x_2=\frac{13-4m}{7}.\frac{-19-6m}{14}=\frac{m-1}{2}\Leftrightarrow\orbr{\begin{cases}m=-2\left(tm\right)\\m=\frac{33}{8}\left(tm\right)\end{cases}}\)
Đề bài sai, gọi \(x_2\) là nghiệm âm của pt (1) thì \(P\left(x_2\right)\) không xác định do \(x^2_2+10x_2+13< 0\)