\(P=\left(\frac{x+1}{x-1}-\frac{4x^2}{1-x^2}-\frac{x-1}{x+1}\right)\cdot\frac{x^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

a) Đk \(x\ne\pm1\), sau khi rút gọn ta được: (bạn tư làm)

   \(P=\frac{x}{x+1}\)

b) Khi \(\left|x-\frac{2}{3}\right|=\frac{1}{3}\) thì hoặc \(x-\frac{2}{3}=\frac{1}{3}\) hoặc \(x-\frac{2}{3}=-\frac{1}{3}\)

Hay là \(x=1\) hoặc \(x=\frac{1}{3}\)

Do để P có nghĩa thì \(x\ne\pm1\) nên \(x=\frac{1}{3}\), khi đó: 

 \(P=\frac{\frac{1}{3}}{\frac{1}{3}+1}=\frac{1}{4}\)

c) P > 1 khi \(\frac{x}{x+1}>1\)

   \(\Leftrightarrow1-\frac{1}{x+1}>1\)

   \(\Leftrightarrow\frac{1}{x+1}< 0\)

   \(\Leftrightarrow x< -1\)

e) Đề không rõ ràng

1 tháng 5 2021

dễ mà ko bt lm à

18 tháng 8 2020

a) ĐKXĐ : \(x\ne0\);\(x\ne2;-2\)

 A=\(\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)

       =\(\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right).\left(\frac{2}{x}-\frac{x}{x}\right)\)

       =\(\frac{x+2+2x+x-2}{\left(x+2\right)\left(x-2\right)}.\frac{2-x}{x}\)

       =\(\frac{4x}{\left(x+2\right)\left(x-2\right)}.\frac{-\left(x-2\right)}{x}\)

       =  \(\frac{-4}{x+2}\)

b) Ta có : \(2x^2+x=0\)

        \(\Leftrightarrow x\left(2x+1\right)=0\)

        \(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{-1}{2}\end{cases}}\left(tm\right)\)

Để A = -1/2 thì 

\(\Leftrightarrow\frac{-4}{x+2}=\frac{-1}{2}\)

\(\Leftrightarrow-\left(x+2\right)=-8\)

\(\Leftrightarrow x+2=8\)

\(\Leftrightarrow x=6\)

c) Để A =0,5 thì 

\(\frac{-4}{x+2}=0,5\)

\(\Leftrightarrow-8=x+2\)

\(\Leftrightarrow x=-10\)

d) Để A \(\inℤ\)thì

\(-4⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(-4\right)\)

\(\Leftrightarrow x+2\in\left\{1;2;4;-1;-2;-4\right\}\)

Lập bảng giá trị 

     x+2-11-22-44
              x-3-1-40-62

Mà \(x\ne0\)và \(x\ne2;-2\)

\(\Rightarrow x\in\left\{-1;-3;-4;-6\right\}\)

13 tháng 10 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne\pm2\end{cases}}\)

\(P=\left(\frac{x^2}{x^3-4x}-\frac{10}{5x+10}-\frac{1}{2-x}\right):\)\(\left(x+2+\frac{6-x^2}{x-2}\right)\)

\(=\left(\frac{x^2}{x\left(x^2-4\right)}-\frac{10}{5\left(x+2\right)}+\frac{1}{x-2}\right)\)\(:\left(\frac{\left(x-2\right)\left(x+2\right)}{x-2}+\frac{6-x^2}{x-2}\right)\)

\(=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right)\)\(:\left(\frac{x^2-4+6-x^2}{x-2}\right)\)

\(=\frac{x-2x+4+x+2}{\left(x-2\right)\left(x+2\right)}:\frac{2}{x-2}\)

\(=\frac{6\left(x-2\right)}{\left(x-2\right)\left(x+2\right).2}=\frac{3}{x+2}\)

\(b,P\in Z\Leftrightarrow\frac{3}{x+2}\in Z\Rightarrow3\)\(⋮\)\(x+2\Rightarrow x+2\inƯ_3\)

MÀ \(Ư_3=\left\{\pm1;\pm3\right\}\)

TH1 : \(x+2=-1\Rightarrow x=-3\)

Th2 : \(x+2=1\Rightarrow x=-1\)

Th3 : \(x+2=-3\Rightarrow x=-5\)

Th4 : \(x+3=3\Rightarrow x=0\left(ktm\right)\)

Vậy để P có giá trị nguyên thì x thuộc { - 3 ; - 5 ;- 1 }

\(c,P=-1\Leftrightarrow\frac{3}{x+2}=-1\)

\(\Rightarrow\frac{3}{x+2}=\frac{-1}{1}\Rightarrow3=-1\left(x+2\right)\)

\(\Rightarrow-x-2=3\Rightarrow-x=5\)

\(\Rightarrow x=-5\)

Vậy để P = -1 thì x = - 5

\(d,P>0\Leftrightarrow\frac{3}{x+2}>0\)

Vì \(x+2>0\)nên để \(\frac{3}{x+2}>0\)thì \(x+2>0\)

\(\Rightarrow x>-2\)

Vậy để \(P>0\)thì \(x>2\) và \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

13 tháng 10 2019

\(đk\hept{\begin{cases}\left(x+2\right)\left(x-2\right)x\ne0\\x+2\ne0\end{cases}< =>x\ne0;x\ne\pm}2\)

P=\(\left(\frac{x}{x^2-4}-\frac{10\left(x-2\right)}{5\left(x+2\right)\left(x-2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right):\)\(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{6-x^2}{x+2}\)

=\(\frac{x-2\left(x-2\right)+x+2}{\left(x-2\right)\left(x+2\right)}:\left(\frac{x^2-4+6-x^2}{x+2}\right)\)=\(\frac{6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{2}=\frac{3}{x-2}\)

b) P \(\in Z\)<=> x-2=3;x-2=-3;x-2=1;x-2=-1 <=> x=5; x=-1; x=3; x=1 (thỏa mãn điều kiện ban đầu)

c) P=1 <=> x-2=3 <=> x=5 (thỏa mãn điều kiện)

d) P>0 <=> x-3 >=0 <=> x>3 kết hợp với điều kiện ban đầu => x>3