\(P=\left[\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{y}-y\sqrt{x}}{y-x}\right]:\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

\(P=\left[\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{y}-y\sqrt{x}}{y-x}\right]:\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(=\left[\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x}\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}\right]:\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(=\left[\sqrt{x}+\sqrt{y}-\frac{\sqrt{x}\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}\right]:\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(=\left[\sqrt{x}+\sqrt{y}-\frac{\sqrt{x}\sqrt{y}}{\left(\sqrt{y}+\sqrt{x}\right)}\right]:\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-\sqrt{x}\sqrt{y}}{\left(\sqrt{y}+\sqrt{x}\right)}:\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-\sqrt{x}\sqrt{y}}{\left(\sqrt{y}+\sqrt{x}\right)}.\frac{\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}\)

\(=\frac{x+2\sqrt{xy}+y-\sqrt{xy}}{x-2\sqrt{xy}+y+\sqrt{xy}}\)

\(=\frac{x+\sqrt{xy}+y}{x-\sqrt{xy}+y}\)

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

\(\frac{\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{x}+y\sqrt{y}}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}+y\sqrt{y}}{x-y}\right)\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}^3+\sqrt{y}^3}\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}^3+\sqrt{y}^3}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\sqrt{x}+\sqrt{y}-\frac{x-\sqrt{xy}+y}{\sqrt{x}-\sqrt{y}}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x-\sqrt{xy}+y}{\sqrt{x}-\sqrt{y}}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{x-y-x+\sqrt{xy}-y}{\sqrt{x}-\sqrt{y}}\right)\)

\(=\frac{1}{x-\sqrt{xy}+y}\left(\frac{\sqrt{xy}-2y}{\sqrt{x}-\sqrt{y}}\right)\)

tự làm tiếp nh đến đây dễ rồi

24 tháng 9 2017

Năm 1930 có sự kiện gì và năm 1945 có sự kiện gì toán lóp 4

\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)

_Minh ngụy_

\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )

\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)

_Minh ngụy_

27 tháng 10 2019

a.\(DK:x,y>0\)

Ta co:

\(A=\frac{x+y+2\sqrt{xy}}{xy}.\frac{\sqrt{xy}\left(x+y\right)}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

b.

Ta lai co:

\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}}{4}=1\)

Dau '=' xay ra khi \(x=y=4\)

Vay \(A_{min}=1\)khi \(x=y=4\)