\(P=\)\(\left[\frac{2}{3a}-\frac{2}{a+1}.\left(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

a) ĐKXĐ : \(\hept{\begin{cases}a\ne0\\a\ne-1\\a\ne1\end{cases}}\)

Khi đó P = \(\left[\frac{2}{3a}-\frac{2}{a+1}\left(\frac{a+1}{3a}-a-1\right)\right]:\frac{a-1}{a}\)

\(=\left[\frac{2}{3a}-\frac{2}{a+1}.\frac{a+1}{3a}+\frac{2}{a+1}.\left(a+1\right)\right]:\frac{a-1}{a}\)

\(=\left(\frac{2}{3a}-\frac{2}{3a}+2\right):\frac{a-1}{a}=2:\frac{a-1}{a}=\frac{2a}{a-1}\)

b) Ta có P = \(\frac{2a}{a-1}=\frac{2a-2+2}{a-1}=2+\frac{2}{a-1}\)

\(P\inℤ\Leftrightarrow2⋮a-1\Leftrightarrow a-1\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)

<=> \(a\in\left\{2;3;0;-1\right\}\)

c) Để P \(\le1\)

<=> \(\frac{2a}{a-1}\le1\)

<=> \(\frac{a+1}{a-1}\le0\)

Xét 2 trường hợp 

TH1 : \(\hept{\begin{cases}a+1\ge0\\a-1\le0\end{cases}}\Leftrightarrow-1\le a\le1\)

Kết hợp điều kiện => -1 < a < 1 (a \(\ne0\))

TH2 : \(\hept{\begin{cases}a+1\le0\\a-1\ge0\end{cases}}\Leftrightarrow a\in\varnothing\)

Vậy - 1 < a < 1 (a \(\ne0\))

26 tháng 4 2019

\(A=\left(\frac{2x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{5-x^2}{x+2}\right)\) ĐKXĐ : \(x\ne\pm2\)

\(A=\left(\frac{2x}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4}{x+2}+\frac{5-x^2}{x+2}\right)\)

\(A=\left(\frac{2x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+5-x^2}{x+2}\right)\)

\(A=\frac{x-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1}\)

\(A=\frac{x-6}{x-2}\)

26 tháng 4 2019

b, ta có \(/\frac{1}{2}/=\frac{1}{2}=\frac{-1}{2}\)

TH1 : Thay x = 1/2 vào A 

.....

Th2 : Thay x = -1/2 vào A :

... 

Bn tự tính vào kết luận 

23 tháng 6 2021

a, \(M=\left[\frac{2}{3a}-\frac{2}{a+1}\left(\frac{a+1}{3a}-a-1\right)\right]:\frac{a-1}{a}\)ĐK : \(a\ne\pm1;0\)

\(=\left[\frac{2}{3a}-\frac{2}{a+1}\left(\frac{a+1-3a^2-3a}{3a}\right)\right]:\frac{a-1}{a}\)

\(=\left[\frac{2}{3a}-\frac{2}{a+1}\left(\frac{-3a^2-2a+1}{3a}\right)\right]:\left(\frac{a-1}{a}\right)\)

\(=\left[\frac{2}{3a}+\frac{2}{a+1}.\frac{\left(a+1\right)\left(3a-1\right)}{3a}\right]:\left(\frac{a-1}{a}\right)\)

\(=\left(\frac{2}{3a}+\frac{2\left(3a-1\right)}{3a}\right):\left(\frac{a-1}{a}\right)=\frac{2a}{a-1}\)

b, Để P nguyên \(\frac{2a}{a-1}=\frac{2\left(a-1\right)+2}{a-1}=2+\frac{2}{a-1}\)

Vì 2 nguyên nên \(\frac{2}{a-1}\)cũng phải nguyên 

\(\Rightarrow a-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

a - 11-12-2
a2 ( tm )0 ( tm )3 (tm )-1 (tm)

c, Ta có : \(P\le1\Rightarrow\frac{2a}{a-1}\le1\Leftrightarrow\frac{2a}{a-1}-1\le0\)

\(\Leftrightarrow\frac{a+1}{a-1}\le0\)mà a + 1 > a - 1 

\(\hept{\begin{cases}a+1\ge0\\a-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ge-1\\a\le1\end{cases}\Leftrightarrow-1\le}a\le1}\)

Kết hợp với đk vậy \(-1< a< 1;a\ne0\)thì \(P\le1\)

8 tháng 3 2019

Cho đường tròn (o)  Và điểm A khánh  nằm ngoài đường tròn từ A vê 2 tiếp tuyến AB, AC với đường tròn . D nằm giữa A và E tia phân giác của góc DBE cắt DE ở I 

a)  chứng minh rằng AB2 =AD * AE

b) Chứng minh rằng BD/BE=CD/CE

20 tháng 8 2018

B1:dài quá :vv
B2:\(Q=\frac{x^2}{x^4+x^2+1}=\frac{x^2}{x^4+2x^2+1-x^2}=\frac{x^2}{\left(x^2+1\right)-x^2}=\frac{x^2}{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

\(=\frac{x}{x^2-x+1}.\frac{x}{x^2+x+1}=\frac{2}{3}.\frac{x}{x^2+x+1}\)

\(\frac{x}{x^2-x+1}=\frac{2}{3}\Rightarrow\frac{x^2-x+1}{x}=\frac{3}{2}\Rightarrow\frac{x^2-x+1}{x}+2=\frac{3}{2}+2\Rightarrow\frac{x^2+x+1}{x}=\frac{7}{2}\)

\(\Rightarrow\frac{x}{x^2+x+1}=\frac{2}{7}\Rightarrow Q=\frac{2}{3}.\frac{2}{7}=\frac{4}{21}\)

29 tháng 8 2018

3.

Ta có: \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)

 \(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)   

Do a(a-1)(a+1)(a-2)(a+2) là tích của 5 số hạng liên tiếp nên chia hết cho 2,3 và 5

Lại có a(a-1)(a+1) là tích của 3 số hạng liên tiếp nên chia hết cho 2,3 suy ra 5a(a-1)(a+1) chia hết cho 2,3,5

Từ đó:a(a-1)(a+1)(a-1)(a+2)+5a(a-1)(a+1) chia hết cho 2,3,5 hay a(a-1)(a+1)(a-2)(a+2)+5a(a-1)(a+1) chia hết cho 30 \(\Leftrightarrow a^5-a\) chia hết cho 30

Tương tự ta có\(b^5-b\) chia hết cho 30, \(c^5-c\) chia hết cho 30

Do đó:\(a^5-a+b^5-b+c^5-c⋮30\)

\(\Leftrightarrow a^5+b^5+c^5-\left(a+b+c\right)⋮30\)

Mà a+b+c=0 nên;

\(a^5+b^5+c^5⋮30\left(ĐCCM\right)\)

13 tháng 3 2020

9) bài này nhiều cách thay lắm. chả biết cách nào nhanh hơn. 

ĐK : ...

\(N=\frac{a+x+1}{a+x}:\frac{a^2+ax-a}{a+x}.\left[\frac{2ax-1+\left(a^2+x^2\right)}{2ax}\right]\)

\(N=\frac{a+x+1}{a+x}.\frac{a+x}{a\left(a+x-1\right)}.\frac{\left(a+x\right)^2-1}{2ax}\)

\(N=\frac{a+x+1}{a\left(a+x-1\right)}.\frac{\left(a+x-1\right)\left(a+x+1\right)}{2ax}\)

\(N=\frac{\left(a+x+1\right)^2}{2a^2x}=\frac{\left(a+1+\frac{1}{a-1}\right)^2}{\frac{2a^2}{a-1}}\)

\(N=\frac{\left(\frac{\left(a+1\right)\left(a-1\right)+1}{a-1}\right)^2}{\frac{2a^2}{a-1}}=\frac{\left(\frac{a^2}{a-1}\right)^2}{\frac{2a^2}{a-1}}=\frac{\frac{a^4}{\left(a-1\right)^2}}{\frac{2a^2}{a-1}}=\frac{a^2}{2\left(a-1\right)}\)

10) \(3a^2+3b^2=10ab\Leftrightarrow3a^2-10ab+3b^2=0\)

\(\Leftrightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)

\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)

\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3a=b\\a=3b\left(loai-vi-b>a>0\right)\end{cases}}\)

Thay 3a = b vào biểu thức, ta có :

\(P=\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=\frac{-1}{2}\)

24 tháng 3 2020

a) \(a\ne0;a\ne1\)

\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)

\(=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]\cdot\frac{4a^2}{a\left(a^2+4\right)}\)

\(=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(=\frac{a^3-1}{a^3-1}\cdot\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

Vậy \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

b) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

M>0 khi 4a>0 => a>0

Kết hợp với ĐKXĐ

Vậy M>0 khi a>0 và a\(\ne\)1

c) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

\(M=\frac{4a}{a^2+4}=\frac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\frac{\left(a-2\right)^2}{a^2+4}\)

Vì \(\frac{\left(a-2\right)^2}{a^2+4}\ge0\forall a\)nên \(1-\frac{\left(a-2\right)^2}{a^2+4}\le1\forall a\)

Dấu "=" <=> \(\frac{\left(a-2\right)^2}{a^2+4}=0\)\(\Leftrightarrow a=2\)

Vậy \(Max_M=1\)khi a=2

28 tháng 3 2023

mik thắc mắc tại sao 3a lại mất vậy

 

2 tháng 2 2017

a, \(A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(1-\frac{x}{x+2}\right)\)

\(=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(1-\frac{x}{x+2}\right)\)

=\(\left(\frac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x+2-x}{x+2}\right)\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{2}\)

\(=\frac{-3}{x-2}\)

b. Thay : x=-4

=>-3/x-2=-3/(-4)-2=1/2

2 tháng 2 2017

câu a quy đồng mẫu lên: x^2-4=(x+2)(x-2). câu b thì thay vào. câu c toán 7 tự làm