\(\left(\dfrac{a}{3a^2-6a}+\dfrac{2a-3}{2a^2-a^3}\right).\dfrac{6a}{a^2-6a+9}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) ĐKXĐ: $a\neq 0; a\neq 3; a\neq 2$

\(P=\left[\frac{a}{3a(a-2)}-\frac{2a-3}{a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\left[\frac{a^2}{3a^2(a-2)}-\frac{6a-9}{3a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\frac{a^2-6a+9}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{(a-3)^2}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{2}{a(a-2)}\)

b) 

Để $P>0\Leftrightarrow \frac{2}{a(a-2)}>0\Leftrightarrow a(a-2)>0$

$\Leftrightarrow a>2$ hoặc $a< 0$

Kết hợp với ĐKXĐ suy ra $(a>2; a\neq 3)$ hoặc $a< 0$

ĐKXĐ: \(a\notin\left\{0;2\right\}\)

a) Ta có: \(P=\left(\dfrac{a}{3a^2-6a}+\dfrac{2a-3}{2a^2-a^3}\right)\cdot\dfrac{6a}{a^2-6a+9}\)

\(=\left(\dfrac{a}{3a\left(a-2\right)}+\dfrac{2a-3}{a^2\left(2-a\right)}\right)\cdot\dfrac{6a}{a^2-6a+9}\)

\(=\left(\dfrac{a^2}{3a^2\cdot\left(a-2\right)}-\dfrac{3\left(2a-3\right)}{3a^2\cdot\left(a-2\right)}\right)\cdot\dfrac{6a}{\left(a-3\right)^2}\)

\(=\dfrac{a^2-6a+9}{3a^2\cdot\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)

\(=\dfrac{\left(a-3\right)^2}{3a^2\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)

\(=\dfrac{2}{a\left(a-2\right)}\)

b) Để P>0 thì \(\dfrac{2}{a\left(a-2\right)}>0\)

mà 2>0

nên \(a\left(a-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a-2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a>2\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)

Vậy: Để P>0 thì \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)

28 tháng 6 2017

Phép nhân các phân thức đại số

3 tháng 12 2018

Ta có:

\(Q=\dfrac{2a-b}{3a-b}+\dfrac{5b-a}{3a+b}\)

\(Q=\dfrac{\left(2a-b\right)\left(3a+b\right)}{\left(3a-b\right)\left(3a+b\right)}+\dfrac{\left(5b-a\right)\left(3a-b\right)}{\left(3a-b\right)\left(3a+b\right)}\)

\(Q=\dfrac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{\left(3a-b\right)\left(3a+b\right)}\)

\(Q=\dfrac{3a^2+15ab-6b^2}{9a^2-b^2}\)

Ta lại có:

\(6a^2-15ab+5b^2=0\)

\(\Rightarrow3a^2+15ab-6b^2=9a^2-b^2\left(1\right)\)

Thay (1) vào Q

=> Q = 1

22 tháng 4 2017

Biểu thức có giá trị bằng 2 thì:

Giải bài 33 trang 23 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 33 trang 23 SGK Toán 8 Tập 2 | Giải toán lớp 8
1 tháng 8 2018

ta có : \(x+3+\dfrac{4-3a^2}{a^2-9}=\dfrac{5}{2a^2+6a}\)

\(\Leftrightarrow x+3=\dfrac{5}{2a^2+6a}-\dfrac{4-3a^2}{a^2-9}\)

\(\Leftrightarrow x+3=\dfrac{5}{2a\left(a+3\right)}-\dfrac{4-3a^2}{\left(a+3\right)\left(a-3\right)}\) \(\Leftrightarrow x+3=\dfrac{5\left(a-3\right)-2a\left(4-3a^2\right)}{2a\left(a+3\right)\left(a-3\right)}\) \(\Leftrightarrow x+3=\dfrac{5a-15-8a+6a^3}{2a\left(a+3\right)\left(a-3\right)}=\dfrac{6a^3-3a-15}{2a\left(a+3\right)\left(a-3\right)}\)

\(\Leftrightarrow x=\dfrac{6a^3-3a-15}{2a\left(a+3\right)\left(a-3\right)}-3=\dfrac{6a^3-3a-15-3.2a\left(a^2-9\right)}{2a\left(a+3\right)\left(a-3\right)}\)

\(\Leftrightarrow x=\dfrac{6a^3-3a-15-6a^3+54a}{2a\left(a+3\right)\left(a-3\right)}=\dfrac{51a-15}{2a\left(a^2-9\right)}\)

Bác làm nhanh ***** :((

4 tháng 1 2018

a)

Để B được xác định khi:

*\(2a^2+6a\ne0\Rightarrow2a\left(a+3\right)\ne0\)

=>\(a\ne0\)\(a+3\ne0\Rightarrow a\ne-3\)

*a2-9\(\ne\)0

=>(a+9)(a-9)\(\ne\)0

=> a+9\(\ne\)0 và a-9\(\ne\)0

=> a \(\ne\)-9 và a\(\ne\)9

Vậy để B được xác định khi a\(\in\){-9;-3;0;9}

b)

\(\dfrac{\left(a+3\right)^2}{2a^2+6a}\cdot\left(1-\dfrac{6a-18}{a^2-9}\right)\)

=\(\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\left(1-\dfrac{6\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}\right)\)

=\(\dfrac{a+3}{2a}\cdot\left(1-\dfrac{6}{a+3}\right)\)

=\(\dfrac{a+3}{2a}\cdot\left(\dfrac{a+3-6}{a+3}\right)\)

=\(\dfrac{a+3}{2a}\dfrac{a-3}{a+3}\)

=\(\dfrac{a-3}{2a}\)

c) Ta có B=0

=>\(\dfrac{a-3}{2a}=0\\ \Rightarrow a-3=0\\ \Rightarrow a=3\)

Vậy B=0 khi a=3

d)Ta có B=1

\(\Rightarrow\dfrac{a-3}{2a}=1\\ \Rightarrow a-3=2a\\ \Rightarrow a-2a=3\\ \Rightarrow-a=3\\ \Rightarrow a=-3\left(KTMDK\right)\)

23 tháng 12 2018

a)

Để B được xác định khi:

*2a2+6a02a(a+3)02a2+6a≠0⇒2a(a+3)≠0

=>a0a≠0a+30a3a+3≠0⇒a≠−3

*a2-90

=>(a+9)(a-9)0

=> a+90 và a-90

=> a -9 và a9

Vậy để B được xác định khi a{-9;-3;0;9}

b)

(a+3)22a2+6a(16a18a29)(a+3)22a2+6a⋅(1−6a−18a2−9)

=(a+3)22a(a+3).(16(a3)(a3)(a+3))(a+3)22a(a+3).(1−6(a−3)(a−3)(a+3))

=a+32a(16a+3)a+32a⋅(1−6a+3)

=a+32a(a+36a+3)a+32a⋅(a+3−6a+3)

=a+32aa3a+3a+32aa−3a+3

=a32aa−32a

c) Ta có B=0

=>a32a=0a3=0a=3a−32a=0⇒a−3=0⇒a=3

Vậy B=0 khi a=3

d)Ta có B=1

a32a=1

24 tháng 12 2016

a) B xác định

\(\Leftrightarrow\begin{cases}2a^2+6a\ne0\\a^2-9\ne0\end{cases}\Leftrightarrow\begin{cases}2a\left(a+3\right)\ne0\\\left(a+3\right)\left(a-3\right)\ne0\end{cases}\Leftrightarrow\begin{cases}a\ne0\\a\ne-3\\a\ne3\end{cases}\)

Vậy để B xác định thì \(a\ne0\)\(a\ne\pm3\)

b) \(B=\frac{\left(a+3\right)^2}{2a^2+6a}\cdot\left(1-\frac{6a-18}{a^2-9}\right)\)

\(=\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\frac{\left(a+3\right)\left(a-9\right)}{\left(a+3\right)\left(a-3\right)}\)

\(=\frac{a+3}{2a}\cdot\frac{a-9}{a+3}\)

\(=\frac{a-9}{2a}\)

 

8 tháng 12 2017

a) ĐKXĐ: \(\left\{{}\begin{matrix}2a^2+6a\ne0\\a^2-9\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2a\left(a+3\right)\ne0\\\left(a-3\right)\left(a+3\right)\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2a\ne0\\a-3\ne0\\a+3\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a\ne0\\a\ne3\\a\ne-3\end{matrix}\right.\)

b) \(B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(1-\dfrac{6a-18}{a^2-9}\right)\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(\dfrac{a^2-9}{a^2-9}-\dfrac{6a-18}{a^2-9}\right)\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a^2-9\right)-\left(6a-18\right)}{a^2-9}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-9-6a+18}{a^2-9}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-6a+9}{a^2-9}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a-3\right)^2}{a^2-9}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\dfrac{\left(a-3\right)^2}{\left(a-3\right)\left(a+3\right)}\)

\(\Leftrightarrow B=\dfrac{a+3}{2a}.\dfrac{a-3}{a+3}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)\left(a-3\right)}{2a\left(a+3\right)}\)

\(\Leftrightarrow B=\dfrac{a-3}{2a}\)

23 tháng 12 2017

a)  B = \(\frac{\left(a+3\right)^2}{2a^2+6a}\)\(\left(1-\frac{6a-18}{a^2-9}\right)\)

\(\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\)\(\left(1-\frac{6\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}\right)\)

\(\frac{a+3}{2a}\).  \(\left(1-\frac{6}{a+3}\right)\)

\(\frac{a+3}{2a}\)\(\frac{a+3-6}{a+3}\)

=   \(\frac{a+3}{2a}\).  \(\frac{a-3}{a+3}\)

\(\frac{a-3}{2a}\)

b)    B =  \(\frac{a-3}{2a}\)= 1

\(\Leftrightarrow\)\(a-3=2a\)

\(\Leftrightarrow\)\(a=-3\)

Vậy khi B = 1  thì   a = -3

NV
26 tháng 1 2019

Ta có \(6a^2-15ab+5b^2=0\Leftrightarrow15ab=6a^2+5b^2\)

\(Q=\dfrac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{9a^2-b^2}\)

\(Q=\dfrac{3a^2+15ab-6b^2}{9a^2-b^2}=\dfrac{3a^2+6a^2+5b^2-6b^2}{9a^2-b^2}\)

\(Q=\dfrac{9a^2-b^2}{9a^2-b^2}=1\)