Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}-1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}+1}-1\right):\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{2x}+1\right)+\left(\sqrt{2x}+\sqrt{x}\right)\left(\sqrt{2x}-1\right)-2x+1}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x}+1\right)}:\left(\dfrac{2x-1+\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)-\left(\sqrt{2x}+\sqrt{x}\right)\left(\sqrt{2x}+1\right)}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x}+1\right)}\right)\)
\(=\dfrac{x\sqrt{2}+\sqrt{x}+\sqrt{2x}+1+2x-\sqrt{2x}+x\sqrt{2}+\sqrt{x}-2x+1}{2x-1}:\dfrac{2x-1+x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-\left(2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}\right)}{2x-1}\)
\(=\dfrac{2x\sqrt{2}+2\sqrt{x}+2}{-2-2\sqrt{x}}\)
a: \(P=\dfrac{3\sqrt{x}+1}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}+1}=\dfrac{3\sqrt{x}+4}{\sqrt{x}+1}\)
b: \(P-4=\dfrac{3\sqrt{x}+4-4\sqrt{x}-4}{\sqrt{x}+1}=-\dfrac{\sqrt{x}}{\sqrt{x}+1}< 0\)
=>P<4
a) \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{x-1}\right):\left(\dfrac{2x}{x-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\left(x\ge0,x\ne1\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2x-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\sqrt{x}}=-\dfrac{1}{\sqrt{x}-1}\)
b) \(A=2\Rightarrow\dfrac{-1}{\sqrt{x}-1}=2\Rightarrow-1=2\sqrt{x}-2\Rightarrow2\sqrt{x}=1\Rightarrow\sqrt{x}=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{4}\)
Lời giải:
ĐK: $x\geq 0; x\neq 1$
a.
\(A=\frac{\sqrt{x}(\sqrt{x}-1)-x}{(\sqrt{x}-1)(\sqrt{x}+1)}:\frac{2x-\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\frac{-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}:\frac{x-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{-\sqrt{x}}{x-\sqrt{x}}=\frac{-\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)}=\frac{1}{1-\sqrt{x}}\)
b.
$A=2\Leftrightarrow 1-\sqrt{x}=\frac{1}{2}$
$\Leftrightarrow \sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}$ (tm)
Câu 1:
Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)
Câu 3:
Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)
\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)\)
\(=a-2\sqrt{a}\)
\(a,P=\dfrac{3\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\left(dk:x\ge0,x\ne1\right)\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}-\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}+4-\sqrt{x}-1}{\sqrt{x}+2}\\ =\dfrac{\sqrt{x}+3}{\sqrt{x}+2}\)
\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)
\(\Rightarrow P=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+3}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}=\dfrac{\left|\sqrt{5}-1\right|+3}{\left|\sqrt{5}-1\right|+2}=\dfrac{\sqrt{5}-1+3}{\sqrt{5}-1+2}=\dfrac{\sqrt{5}+2}{\sqrt{5}+1}\)
\(A=\left(\dfrac{2x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+\sqrt{x}-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)
\(=\left(\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\sqrt{x}-1\right)^2\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
b. Đặt \(B=A-2x\)
\(B=\sqrt{x}-1-2x=-2\left(\sqrt{x}-\dfrac{1}{4}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}\)
\(B_{max}=-\dfrac{7}{8}\) khi \(\sqrt{x}-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{16}\)
a, x > 0 ; x khác 1
\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)
\(=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{1}{\sqrt{x}-1}=\dfrac{x-2}{\sqrt{x}}\)
b, Ta có : \(P=\dfrac{x-2}{\sqrt{x}}=1\Rightarrow x-2=\sqrt{x}\)
\(\Leftrightarrow x-\sqrt{x}-2=0\Leftrightarrow\left(\sqrt{x}+1>0\right)\left(\sqrt{x}-2\right)=0\Leftrightarrow x=4\)(tm)
a: \(P=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x-2}{\sqrt{x}}\)
b: Để P=1 thì \(x-\sqrt{x}-2=0\)
hay x=4
\(=\dfrac{2x-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)
\(=\dfrac{x\left(x-1\right)}{x+\sqrt{x}+1}\)
a: \(P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
b: Khi x=9 thì P=9-3+1=7
c: P=3
=>x-căn x-2=0
=>(căn x-2)(căn x+1)=0
=>x=4