K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

Áp dụng t/c dãy tỉ số bằng nhau :\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)

\(\Rightarrow\begin{cases}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{cases}\) => x = y = z = t

Thay vào P được : \(P=1+1+1+1=4\)

18 tháng 8 2016

Sao thủy

Sao kim

Trái đất

Sao hỏa

Sao mộc

Sao thổ

Sao thiên vương

Sao hải vương

DD
14 tháng 6 2021

\(A=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{x+z+t}+\frac{t}{y+z+t}\)

\(A< \frac{x}{x+y}+\frac{y}{x+y}+\frac{z}{z+t}+\frac{t}{z+t}=\frac{x+y}{x+y}+\frac{z+t}{z+t}=2\)

\(A>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Suy ra \(1< A< 2\)do đó \(A\)không là số tự nhiên. 

11 tháng 5 2016

CM 1<M<2 là đc

11 tháng 5 2016

bn cần cách lm chi tiết ko?

5 tháng 3 2015

hình như đề bài sai

 

9 tháng 4 2016

3/y2 hay y2/3

29 tháng 7 2015

\(\frac{x}{140}=\frac{-18}{y}=\frac{z}{-21}=\frac{-135}{t}=\frac{2679}{6251}\)

\(\Rightarrow x=\frac{140.2679}{6251}=60\)

\(y=\frac{-18.6251}{2679}=-42\)

\(z=\frac{-21.2679}{6251}=-9\)

\(t=\frac{-135.6251}{2679}=315\)

3 tháng 8 2019

mk làm mất công lắm mong bạn tick

1)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x}{y}=\frac{9}{11}=\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3\) ( do \(x+y=20\) )

\(\Rightarrow\left\{{}\begin{matrix}x=3.9\\y=3.11\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=27\\y=33\end{matrix}\right.\)

Vậy : \(\left(x,y\right)=\left(27,33\right)\)

2)

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{30}{10}=3\) ( do \(x+y+z=30\))

\(\Rightarrow\left\{{}\begin{matrix}x=3.2\\y=3.3\\z=3.5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)

Vậy : \(\left(x,y,z\right)=\left(6,9,15\right)\)

b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}=\frac{x-2y+3z}{2-6+15}=\frac{38}{11}\)

Bạn tự tìm x,y,z phần này nhé, tại số xấu quá !

22 tháng 3 2019

x=y=z=t=2

22 tháng 3 2019

Vi vai tro cua x,y,z,t la binh dang nen gia su 

\(x\le y\le z\le t\)

=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{t^2}\le\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}\)

\(\Rightarrow1\le\frac{4}{x^2}\Rightarrow\)\(\frac{4}{4}\le\frac{4}{x^2}\)\(\Rightarrow x^2\le4\)\(\Rightarrow x^2\in\left\{1;4\right\}\)

\(+)\)\(x^2=1\)\(\Rightarrow\)\(\frac{1}{1}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{t^2}=1\)\(\Rightarrow\)\(\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{t^2}=0\)(loai )

+) \(x^2=4\Rightarrow\)\(\frac{1}{4}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{t^2}=1\Rightarrow\)\(\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{t^2}=\frac{3}{4}\le\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{y^2}\)  

                                                                                \(\Rightarrow\)\(\frac{3}{4}\le\frac{3}{y^2}\)\(\Rightarrow\)\(y^2\le4\)\(\Rightarrow\)\(y^2\in\left\{1;4\right\}\)

+) \(y^2=1\Rightarrow\)\(\frac{1}{1}+\frac{1}{z^2}+\frac{1}{t^2}=1\)\(\Rightarrow\)\(\frac{1}{z^2}+\frac{1}{t^2}=0\)(loai)

+) \(y^2=4\Rightarrow\)\(\frac{1}{4}+\frac{1}{z^2}+\frac{1}{t^2}=1\)\(\Rightarrow\)\(\frac{1}{z^2}+\frac{1}{t^2}=\frac{3}{4}\le\frac{1}{z^2}+\frac{1}{z^2}\)\(\Rightarrow\)\(\frac{3}{4}\le\frac{2}{z^2}\)

                  \(\Rightarrow\)\(\frac{6}{8}\le\frac{6}{3z^2}\)\(\Rightarrow\)\(3z^2\le8\)\(\Rightarrow\)\(z^2\le2\)\(\Rightarrow\)\(z^2=1\)

den day minh chiu

3 tháng 8 2019

\(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24};\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\Rightarrow\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\Rightarrow x=60;y=72;z=63\)

3 tháng 8 2019

1,\(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{42}\)\(=\frac{69}{46}=\frac{3}{2}\)

=>x=60;y=72;z=63

2, t tự.