Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có : \(x=\sqrt{3+2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}=4\)
Thay x = 4 => \(\sqrt{x}=2\) vào B ta được :
\(B=\frac{2+5}{2-3}=-7\)
b, Ta có : Với \(x\ge0;x\ne9\)
\(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\frac{4\left(\sqrt{x}-3\right)+2x-\sqrt{x}-13-\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)
\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13-x-3\sqrt{x}}{x-9}=\frac{x-25}{x-9}\)
Lại có \(P=\frac{A}{B}\Rightarrow P=\frac{\frac{x-25}{x-9}}{\frac{\sqrt{x}+5}{\sqrt{x}-3}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{1}{\sqrt{5}-2}-\sqrt{9-4\sqrt{5}}=\frac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\sqrt{5-4\sqrt{5}+4}\)
\(A=\frac{\sqrt{5}+2}{5-4}-\sqrt{\left(\sqrt{5}-2\right)^2}=\sqrt{5}+2-\sqrt{5}+2=4\)
\(B=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{x-\sqrt{x}}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
b) Với x >0 và x khác 1 (1)
Ta có: \(\frac{1}{6}A>B\) <=> \(\frac{\sqrt{x}-1}{\sqrt{x}}< 4\cdot\frac{1}{6}\)
<=> \(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{2}{3}\) <=> \(3\sqrt{x}-3< 2\sqrt{x}\) <=> \(\sqrt{x}< 3\) <=> x < 9 (2)
Từ (1) và (2) => 0 < x < 9 và x khác 1
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé
a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
\(P=\frac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}-3\right)\left(2+\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(=\frac{2+\sqrt{x}}{3+\sqrt{x}}\)
b/ i, \(x=\sqrt{4+4\sqrt{2}+2}+\sqrt{4-4\sqrt{2}+2}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=2+\sqrt{2}+2-\sqrt{2}=4\)
Thay vào P có:\(P=\frac{2+\sqrt{4}}{3+\sqrt{4}}=\frac{4}{5}\)
ii, \(x=\frac{\sqrt{2}+1-\sqrt{2}+1}{2-1}=2\)
Thay vào có:\(P=\frac{2+\sqrt{2}}{3+\sqrt{2}}=\frac{4+\sqrt{2}}{7}\)
a) Ta có:
\(P=\frac{x-\sqrt{x}}{x-9}+\frac{\sqrt{x}-3}{x-9}-\frac{\sqrt{x}+3}{x-9}\)
\(P=\frac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{x-9}\)
\(P=\frac{x-\sqrt{x}-6}{x-9}\)