\(P=\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}\)

Chứng minh rằng:...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

\(P=\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}>\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}=1\) (1)

\(P=\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x+z}{x+y+z}+\dfrac{x+y}{x+y+z}+\dfrac{y+z}{x+y+z}=2\)(2)

Từ (1) và (2) ta có đpcm

1 tháng 1 2018

a) Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> ad = bc

Ta có : (a + 2c)(b + d)

= a(b + d) + 2c(b + d)

= ab + ad + 2cb + 2cd (1)

Ta có : (a + c)(b + 2d)

= a(b + 2d) + c(b + 2b)

= ab + a2d + cb + c2b

= ab + c2d + ad + c2b (Vì ad = cd) (2)

Từ (1),(2) => (a + 2c)(b + d) = (a + c)(b + 2d) (ĐPCM)

1 tháng 1 2018

Sửa đề bài : P = \(\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\)

Ta có : \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

=> \(\dfrac{y+z+t}{x}=\dfrac{z+t+x}{y}=\dfrac{t+x+y}{z}=\dfrac{x+y+z}{t}\)

=> \(\dfrac{y+z+t}{x}+1=\dfrac{z+t+x}{y}+1=\dfrac{t+x+y}{z}+1=\dfrac{x+y+z}{t}+1\)=> \(\dfrac{y+z+t+x}{x}=\dfrac{z+t+x+y}{y}=\dfrac{t+x+y+z}{z}=\dfrac{x+y+z+t}{t}\)TH1: x + y + z + t # 0

=> x = y = z = t

Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)

P = \(\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}\)

P = 1 + 1 + 1 + 1 = 4

TH2 : x + y + z + t = 0

=> x + y = -(z + t)

y + z = -(t + x)

z + t = -(x + y)

t + x = -(y + z)

Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)

P = \(\dfrac{-\left(z+t\right)}{z+t}=\dfrac{-\left(t+x\right)}{t+x}=\dfrac{-\left(x+y\right)}{x+y}=\dfrac{-\left(y+z\right)}{y+z}\)

P = (-1) + (-1) + (-1) + (-1)

P = -4

Vậy ...

17 tháng 4 2017

\(\dfrac{x}{x+y+z}=\dfrac{y}{x+z+t}=\dfrac{z}{y+z+t}=\dfrac{t}{x+z+t}\\ =\dfrac{x+y+z+t}{x+y+z+x+z+y+y+z+t+x+z+t}\)

\(=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\\ hayM=\dfrac{1}{3}\)

\(M^{10}=\left(\dfrac{1}{3}\right)^{10}=\dfrac{1}{3^{10}}< 2017\)

19 tháng 11 2017

* Nếu x = y = z = t; vẫn thỏa gt: \(\dfrac{x}{y+z+t}\) = \(\dfrac{y}{x+z+t}\) = \(\dfrac{z}{y+x+t}\) = \(\dfrac{t}{y+z+x}\) = \(\dfrac{1}{3}\)
=> P = \(\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}=4\)
* Nếu có ít nhất 2 số khác nhau, giả sử x # y. tính chất tỉ lệ thức:
\(\dfrac{x}{y+z+t}\) \(=\dfrac{y}{x+z+t}=\dfrac{x-y}{y+z+t-x-z-t}=\dfrac{x-y}{y-x}=-1\)
\(\rightarrow x=-y+z+t\rightarrow x+y+z+t=0\)
=>
{ x+y = -(z+t) ---- { (x+y)/(z+t) = -1
{ y+z = -(t+x) => { (y+z)/(t+x) = -1
{ z+t = -(x+y) ---- { (z+t)/(x+y) = -1
{ t+x = -(z+y) ---- { (t+x)/(z+y) = -1
=> P = -1 -1 -1 -1 = -4
Vậy P có giá trị nguyên

19 tháng 11 2017

Ta có:\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{y+z+t+x}{z+t+x}=\dfrac{z+t+x+y}{t+x+y}=\dfrac{t+x+y+z}{x+y+z}\)

*Xét: \(x+y+z+t\ne0\Rightarrow z=y=z=t,\)khi đó:\(P=1+1+1+1=4\)

* Xét \(x+y+z+t=0\Rightarrow x+y=-\left(z+t\right);y+z=-\left(t+x\right);z+t=-\left(x+y\right);t+z=\left(-y+z\right)\)Khi đó: \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P luôn luôn có giá trị nguyên

12 tháng 4 2017

Từ \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)

\(x+y+z+t\ne0\) nên ta đi xét \(x+y+z+t=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(t+x\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\). Khi đó

\(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=4\)

12 tháng 4 2017

hình như bạn làm nhầm rùi thì phải x+y+z+t khác 0 rồi sao lại x +y+z+t = 0 nữa zậy bạn

24 tháng 6 2017

Ta có: \(x< y\Leftrightarrow\dfrac{a}{m}< \dfrac{b}{m}\Leftrightarrow a< b\)(1)

Từ (1), Suy ra:

\(a< b\Leftrightarrow a+a< b+a\Leftrightarrow2a< a+b\left(2\right)\)

\(a< b\Leftrightarrow a+b< b+b\Leftrightarrow a+b< 2b\left(3\right)\)

Từ (2);(3), ta có:

\(2a< a+b< 2b\Leftrightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\)

\(\Leftrightarrow x< z< y\left(đpcm\right)\)

25 tháng 6 2017

Lạc đề rồi kìa ucche

21 tháng 7 2018

Giúp mình với nhé

13 tháng 10 2018

2) Mình nghĩ nên nhỏ hơn 3 thì dễ tính hơn... @@
Ta có :

\(\dfrac{x}{x+y+z}< \dfrac{x}{x+y}< \dfrac{x}{x}\\ \dfrac{y}{x+y+z}< \dfrac{y}{y+z}< \dfrac{y}{y}\\ \dfrac{z}{x+y+z}< \dfrac{z}{z+x}< \dfrac{z}{z}\)

\(\Rightarrow\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x}{x}+\dfrac{y}{y}+\dfrac{z}{z}\\ \Rightarrow\dfrac{x+y+z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 1+1+1\\ \Rightarrow1< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 3\)

29 tháng 11 2017

Ta có \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2(a+b+c)}{a+b+c}=2 \)

=> a+b=c

b+c=a

c+a=b

M=\(\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}=\frac{(a+b)(b+c)(c+a)}{abc}=2.2.2=8 \)