Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện xác định : \(x\ge0;x\ne1\)
a) ta có : \(A=\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{1}{1+\sqrt{x}}\right):\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{1+\sqrt{x}}\right)+\dfrac{1}{1-\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2}{1-x}\right):\left(\dfrac{2\sqrt{x}}{1-x}\right)+\dfrac{1}{1-\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2}{1-x}\right)\left(\dfrac{1-x}{2\sqrt{x}}\right)+\dfrac{1}{1-\sqrt{x}}=\dfrac{1}{\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\)ta có : \(x=7+4\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\Rightarrow A=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{1-2-\sqrt{3}}=\dfrac{5-3\sqrt{3}}{2}\)
b) áp dụng cauchuy-schwarz dạng engel ta có :
\(A=\dfrac{1}{\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\ge4\)
dấu "=" xảy ra khi : \(\sqrt{x}=1-\sqrt{x}\Leftrightarrow2\sqrt{x}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
vậy ....................................................................................................................
a) điều kiện xác định : \(x>1\)
b) ta có : \(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right)^2.\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)
\(\Leftrightarrow A=\left(\dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x^2-1}}\right)^2.\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)
\(\Leftrightarrow A=\dfrac{2x+2\sqrt{x^2-1}}{x^2-1}.\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)
\(\Leftrightarrow A=\dfrac{2x+2\sqrt{x^2-1}}{2}-\sqrt{x^2-1}=\dfrac{2x}{2}=x\)
b) ta có : \(A=2\sqrt{x}\Leftrightarrow x=2\sqrt{x}\Leftrightarrow x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=4\left(N\right)\end{matrix}\right.\)
vậy \(x=4\)
a) điều kiện xác định : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\\x^2-1\ge0\end{matrix}\right.\Leftrightarrow x>1\)
b) ta có : \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)^2.\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)
\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}}{x-1}\right)^2.\dfrac{\left(x-1\right)\left(x+1\right)}{2}-\sqrt{x^2-1}\)
\(\Leftrightarrow A=\dfrac{4x}{\left(x-1\right)^2}.\dfrac{\left(x-1\right)\left(x+1\right)}{2}-\sqrt{x^2-1}\)
\(\Leftrightarrow A=\dfrac{2x\left(x+1\right)}{\left(x-1\right)}-\sqrt{x^2-1}\) (đề sai chỗ nào đó rồi)
Lời giải:
Điều kiện để $Q$ có nghĩa.
\(x>0; x\neq 1\)
\(Q=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(=\frac{1}{4}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2.\frac{(\sqrt{x}+1)^2-(\sqrt{x}-1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\frac{1}{4}\left(\frac{x-1}{\sqrt{x}}\right)^2.\frac{x+1+2\sqrt{x}-(x-2\sqrt{x}+1)}{x-1}\)
\(=\frac{1}{4}.\frac{(x-1)^2}{x}.\frac{4\sqrt{x}}{x-1}\)
\(=\frac{x-1}{\sqrt{x}}\)
b)
\(Q=3\sqrt{x}-3\)
\(\Leftrightarrow \frac{x-1}{\sqrt{x}}=3(\sqrt{x}-1)\)
\(\Leftrightarrow \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}=3(\sqrt{x}-1)\)
\(\Leftrightarrow (\sqrt{x}-1)(\frac{\sqrt{x}+1}{\sqrt{x}}-3)=0\)
Vì \(x\neq 1\Rightarrow \sqrt{x}-1\neq 0\). Do đó:
\(\frac{\sqrt{x}+3}{\sqrt{x}}-3=0\Rightarrow 3=2\sqrt{x}\)
\(\Rightarrow x=\frac{9}{4}\) (thỏa mãn)
ây ông ở trên ông ghi là \(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
sao xuống dưới lại thành \(\dfrac{\sqrt{x}+3}{\sqrt{x}}\)
sửa lại đi ông ơi
a; ĐKXĐ: x>=0; x<>1
\(P=\dfrac{x+\sqrt{x}-6\sqrt{x}+4+3\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b: Thay \(x=3-\sqrt{8}\) vào P, ta được:
\(P=\dfrac{\sqrt{2}-1-1}{\sqrt{2}-1+1}=\dfrac{\sqrt{2}-2}{\sqrt{2}}=1-\sqrt{2}\)
Bài 1:
a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)
b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)
=>3 căn x=3
=>căn x=1
hay x=1(loại)
Bài 2: a) Ta có: Q=\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) -\(\left(\dfrac{x+2}{\left(\sqrt{x}\right)^3-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\right)\) =\(\dfrac{1}{\sqrt{x}-1}\) -\(\left(\dfrac{x+2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\) =\(\dfrac{1}{\sqrt{x}-1}-\left(\dfrac{x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\) =\(\dfrac{1}{\sqrt{x}-1}-\dfrac{2x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) =
Mk ra đáp án khác với đáp án ủa bn nên bn bào sai chứ j, thật ra cả 2 đáp án đều giống nhau, do biến đổi dấu nên trở thành 2 đáp án khác nhau thôi :V
để mk lm lại phần đáp án của mk ra giống đáp án của bn nek :V
\(a,\)\(P=\dfrac{-x-1}{x-1}\)
\(\Rightarrow\dfrac{-\left(-x-1\right)}{-\left(x-1\right)}=\dfrac{x-1}{-x+1}=\dfrac{x-1}{1-x}\)
Còn câu b thì hôm qua bn ghi là \(x=\dfrac{1}{\sqrt{2}}\) chứ có pk là \(1\sqrt{2}\) đou >:V
\(b,\)Thay \(x=1\sqrt{2}\) vào \(P\) ta có :
\(P=\dfrac{x-1}{1-x}\)
\(P=\dfrac{1\sqrt{2}-1}{1-1\sqrt{2}}=3+2\sqrt{2}\)
à mk cảm ơn tại câu b mk cop lỗi thôi xin lỗi :))