K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

ta có : (10^50)^3<10^150+5*10^50+1<10^150+3*(10^50)^2+3*10^50+1= (10^50+1)^3

vay10^150+5*10^50+1 khong la lap phuong cua 2 so tu nhien

17 tháng 7 2018

Tham khảo .

Ta có :

\(\left(10^{53}\right)^3< 10^{150}+5.10^{50}+1< 10^{150}+3.\left(10^{50}\right)^2+1\)

\(=\left(10^{50}+1\right)^3\)

Vậy \(10^{150}+5.10^{50}+1\)không là lập phương của 1 số tự nhiên 

đpcm

3 tháng 6 2015

Giả sử 10^150 + 5.10^50+1=m^3 (m là số tự nhiên)
Ta thấy VT có tận cùng là 1, suy ra VP phải có tận cùng 1.
mà 1^3=1,2^3=8,... nên m phải có tận cùng là 1, hay m=10k+1 (k là số tự nhiên)
10^150 + 5.10^50+1=(10k+1)^3=1000.k^3+300.k^2+30.k+1
10^150 + 5.10^50 - 1000.k^3- 300.k^2-30.k=0 
suy ra A=10^150 + 5.10^50 - 1000.k^3chia hết cho 3
10^150=(9+1)^150 chia 3 dư 1
5.10^50=5.(9+1)^50 chia 3 dư 2
1000k=999k+k
suy ra k chia hết cho 3
10^150=(9+1)^150 chia 9 dư 1
5.10^50=5.(9+1)^50 chia 9 dư 5
suy ra 10^150 + 5.10^50chia 9 dư 6 (**)
mà 1000.k^3+ 300.k^2+30.k chia hết cho 9 (do k chia hết cho 3) (***)
Từ (**)(***) suy ra mâu thuẫn.
Vậy 10^150 + 5.10^50+1không thể là lập phương của 1 số tự nhiên.

3 tháng 6 2015

Ta có : 10150 < 10150 + 5.1050 + 1 < (1050)+ 3 (1050)+ 3.1050 + 1

Hay : (1050)< 10150 + 5.1050 + 1 < (1050 + 1)3

→ 10150 + 5.1050 + 1 không là lập phương của một số tự nhiên

30 tháng 5 2018

Xét thấy:

\(\left(10^{50}\right)^3< 10^{150}+5.10^{50}+1< 10^{150}+3.\left(10^{50}\right)^2+3.10^{50}+1=\left(10^{50}+1\right)^3\)

Vậy \(10^{150}+5.10^{50}+1\) không là lập phương của 1 số tự nhiên

21 tháng 8 2017

Xét p=2,p=2, ta có: 4p+1=94p+1=9 là số chính phương.
Xét p>2,p>2, vì pp là số nguyên tố nên p=2k+1p=2k+1 (k∈N∗)(k∈N∗)
Ta có: 4p+1=4(2k+1)+1=8k+54p+1=4(2k+1)+1=8k+5
Mặt khác 4p+14p+1 là một số chính phương lẻ nên chia 88 dư 1.1.
Do đó với p>2p>2 thì 4p+14p+1 không là số chính phương.
Vậy số nguyên tố pp để 4p+14p+1 là số chính phương là 2.2. 

21 tháng 8 2017

Xét p=2 , ta có : 4p + 1 = 9 là số chính phương

Xét p > 2 , vì p là số nguyên tố nên p = 2k + 1 (k thuộc N*)

Ta có : 4p + 1 = 4(2k + 1) +1 = 8k + 5

Mặt khác 4p + 1 là một số chính phương lẻ nên chia 8 dư 1

Do đó với p > 2 thì 4p + 1 ko là số chính phương 

Vậy số nguyên tố p để 4p + 1 là số chính phương là 2