Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để B \(\in\)Z thì n + 2 chia hết cho 2n - 6 => 2(n + 2) chia hết cho 2n - 6 => 2n + 4 chia hết cho 2n - 6
Mà 2n - 6 chia hết cho 2n - 6
=> (2n + 4) - (2n - 6) chia hết cho 2n - 6
=> 10 chia hết cho 2n - 6 => 2n - 6 \(\in\)Ư(10)
Mà 2n - 6 chia hết cho 2
=> 2n - 6 \(\in\){-2; 2; -10; 10}
Ta có bảng sau:
2n - 6 | -2 | 2 | -10 | 10 |
2n | 4 | 8 | -4 | 16 |
n | 2 | 4 | -2 | 8 |
Vậy n\(\in\){2; 4; -2; 8}
\(D=\frac{n-12}{n-5}\)
Ta có :\(D=\frac{n-5-7}{n-5}\)
\(D=\frac{n-5}{n-5}-\frac{7}{n-5}\)
\(\Rightarrow D=1-\frac{7}{n-5}\)
Để \(D\in z\)
\(\Rightarrow7⋮n-5\)
\(\Rightarrow n-5\inƯ\left(7\right)=\left(-7;7;1;-1\right)\)
\(\Rightarrow n\in\left(-2;12;6;4\right)\)
Vậy để \(D\in Z\)
thì \(n\in\left(-2;12;6;4\right)\)
\(E=\frac{2n+14}{n+4}\)
\(E=\frac{2n+8+6}{n+4}=\frac{2\left(n+4\right)+6}{n+4}\)
\(E=2+\frac{6}{n+4}\)
suy ra để \(\frac{2n+13}{n+4}\in Z\)
thì \(6⋮n+4\)
Vậy \(n+4\inƯ\left(6\right)=\left(-6;6;3;-3;2;-2;1;-1\right)\)
\(\Rightarrow n\in\left(-10;2;-1;-7;-2;-3;-5\right)\)
Vậy để \(E\in Z\)
thì \(n\in\left(-10;2;-1;-7;-2;-3;-5\right)\)
???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????///????????
ta có : A= \(\frac{2n+2}{2n-4}\)=\(\frac{2n-4+6}{2n-4}=\frac{2n-4}{2n-4}+\frac{6}{2n-4}\)
= \(1+\frac{6}{2n-4}\)
Để A là số nguyên thì : \(1+\frac{6}{2n-4}\)là số nguyên
=> 2n - 4 \(\in\) Ư( 6 )={ 1 ; - 1 ; 2 ; - 2 ; 3 ; - 3 ; 6 ; - 6}
2n - 4 =1 2n -4 = - 1 2n - 4 = 2 2n - 4 = - 2
n =\(\frac{5}{2}\) n = \(\frac{3}{2}\) n = 3 n = 2
2n - 4 = 3 2n - 4 = -3 2n - 4 = 6 2n -4 = -6
n = \(\frac{7}{2}\) n = \(\frac{1}{2}\) n = 5 n = -1
mà n là số nguyên nên :
n = {3; 2 ;5 ; -1}
\(\frac{2n+2}{2n-4}\)=\(\frac{2n-4+6}{2n-4}\)=\(1+\frac{6}{2n-4}\)
Để A nguyên thì \(\frac{6}{2n-4}\) nguyên
=>\(2n+6\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{-2;-4;0;-6\right\}\)
a/ Ta có: n + 10 \(⋮\) n + 3 ( n \(\in\) Z )
\(\Rightarrow n+3+7⋮n+3\)
\(\Rightarrow\) 7 \(⋮\) n + 3
\(\Rightarrow\) n + 3 \(\in\) Ư(7) = { -1 ; 1 ; -7 ; 7 }
\(\Rightarrow\) n \(\in\) { -4 ; -2 ; -10 ; 4 }
Câu b làm t. tự tách n - 15 thành n + 2 - 17
- 17 \(⋮\) n + 2
Câu c tách 2n - 17 thành 2( n - 3 ) - 11
- 11 \(⋮\) n - 3
d/ Ta có: \(n^2+n+10\) \(⋮\) n + 2 ( n \(\in\) Z )
\(\Leftrightarrow\) n( n + 2 ) - n + 10 \(⋮\) n + 2
\(\Leftrightarrow\) n( n + 2 ) - n + 2 + 8 \(⋮\) n + 2
Vì n( n + 2 ) \(⋮\) n + 2 và ( - n + 2) \(⋮\) n + 2
\(\Rightarrow\) 8 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (8) = { -1 ; 1 ; -2 ; 2 ; -4 ; 4 ; -8 ; 8 }
\(\Rightarrow\) n \(\in\) { -3 ; -1 ; -4 ; 0 ; -6 ; 2 ; -10 ; 6 }
Chúc bạn học tốt!!!
a) Điều kiện xác định: n khác 4
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)
Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)
\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)
Vậy .............
b) \(n\in\left\{-2;-4\right\}\)
c) \(n\in\left\{-2;-1;3;5\right\}\)
d) \(n\in\left\{0;-2;2;-4\right\}\)
e) \(n\in\left\{0;2;-6;8\right\}\)
(Bài này có 1 bạn hỏi rồi bạn nhé!!!)
Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0 <=> n khác 7
b) Với n = 7 thì mẫu số bằng 0 => phân số không tồn tại
c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)
Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)
Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)
Ta có :
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)
Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)
\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)
Ta có :
\(M=\frac{9^4.27^5.3^6.3^4}{3^8.81^4.23^4.8^2}\)
\(M=\frac{\left(3^2\right)^4.\left(3^3\right)^5.3^{10}}{3^8.\left(3^4\right)^4.23^4.8^2}\)
\(M=\frac{3^8.3^{15}.3^{10}}{3^8.3^{16}.23^4.8^2}\)
\(M=\frac{3^{33}}{3^{24}.23^4.8^2}\)
\(M=\frac{3^9}{23^4.8^2}\)
Bài 1
a) \(P=\frac{6n+5}{2n-4}=\frac{6n-12+7}{2n-4}=3+\frac{7}{2n-4}\)
Để P là phân số thì \(\hept{\begin{cases}2n-4\ne7\\2n-4\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}n\ne\frac{11}{2}\\n\ne\frac{5}{2}\end{cases}}\)
Vậy...
b) \(P=\frac{6n+5}{2n-4}=3+\frac{7}{2n-4}\)
Để \(P\in Z\)thì \(\orbr{\begin{cases}2n-4=7\\2n-4=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n=\frac{11}{2}\notin Z\\n=\frac{5}{2}\notin Z\end{cases}}}\)
Vậy không có giá trị n nào thuộc Z để P thuộc Z.
c) \(\left|2n-3\right|=\frac{5}{3}\)
Trường hợp: \(2n-3=\frac{5}{3}\Rightarrow n=\frac{7}{3}\)
\(P=\frac{6.\frac{7}{3}+5}{2.\frac{7}{3}-4}=\frac{19}{\frac{2}{3}}=\frac{57}{2}\)
Trường hợp: \(2n-3=-\frac{5}{3}\Rightarrow n=\frac{2}{3}\)
\(P=\frac{6.\frac{2}{3}+5}{2.\frac{2}{3}-4}=\frac{9}{\frac{-8}{3}}=\frac{27}{-8}\)
Bài 2
\(N=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^{10}.4.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+5.2^{12}.3^{10}}{2^{12}.3^{12}-6^{11}}=\frac{6.2^{12}.3^{10}}{6^{12}-6^{11}}\)
\(=\frac{2.3.2^{12}.3^{10}}{6.6^{11}-6^{11}}=\frac{2^{13}.3^{11}}{5.\left(2.3\right)^{11}}=\frac{2^{13}.3^{11}}{5.2^{11}.3^{11}}=\frac{4}{5}\)
n+10/2n-6
=2n-6+36/2n-6
=2n-6/2n-6+36/2n-6
=1+36/2n-6
=1+18/n-3
suy ra 18 chia hết cho (n-3)
(n-3) thuộc ước của 18
Còn lại tự làm nhé
chết mình ghi nhầm là 36 cậu ghi lại là 26 cho mình nhé xong giản ước đi là 13 chứ ko phải 18.Thanks