\(\frac{\sqrt{x}-3}{x}\). Khi \(\sqrt{P}\) x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

- Ta có : \(P-\sqrt{P}=\frac{\sqrt{x}-3}{x}-\frac{\sqrt{\sqrt{x}-3}}{\sqrt{x}}\)

=> \(P-\sqrt{P}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{x\sqrt{x}}-\frac{x\sqrt{\sqrt{x}-3}}{x\sqrt{x}}\)

=> \(P-\sqrt{P}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-x\sqrt{\sqrt{x}-3}}{x\sqrt{x}}\)

=> \(P-\sqrt{P}=\frac{\sqrt{\sqrt{x}-3}\left(\sqrt{x\left(\sqrt{x}-3\right)}-x\right)}{x\sqrt{x}}\)

=> \(P-\sqrt{P}=\frac{\sqrt{x}\sqrt{\sqrt{x}-3}\left(\sqrt{\left(\sqrt{x}-3\right)}-\sqrt{x}\right)}{x\sqrt{x}}\)

\(x>\sqrt{x}-3\)

=> \(P-\sqrt{P}>0\)

=> \(P>\sqrt{P}\)

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

20 tháng 9 2020

ĐK: \(x\ge0;x\ne1\)

a) \(P=\frac{\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(P=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

\(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}.\frac{1}{\sqrt{x}+1}\)

\(P=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

Để  \(P=\sqrt{x}\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=\sqrt{x}\Leftrightarrow\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}-1\right)\)\(\sqrt{x}+1\Leftrightarrow x-\sqrt{x}\Leftrightarrow-x+2\sqrt{x}+1=0\)

\(\Leftrightarrow-\left(x-2\sqrt{x}+1\right)+2=0\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=\sqrt{2}\\\sqrt{x}-1=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\sqrt{2}+1\\\sqrt{x}=-\sqrt{2}+1\end{cases}\Leftrightarrow}x=3\pm2\sqrt{2}}\)

b) Với \(x>1\)thì \(P>0\)

Ta dễ thấy \(P=\frac{\sqrt{x}+1}{\sqrt{x}-1}>1\)

Ta có: \(P>0;P>1\)\(\Rightarrow P\left(P-1\right)>0\Leftrightarrow P^2>P\Leftrightarrow P>\sqrt{P}\)

5 tháng 5 2019

sử dụng phương pháp miền giá trị

5 tháng 5 2019

bạn nói rõ hơn được không?