K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

Điều kiện xác định của phân thức: x ≠ -10, x ≠ 10

Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8

Vậy giá trị P =10 với mọi x ≠ ± 10

10 tháng 7 2021

Bài 1 : 

a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi y = 1/2 

Vậy GTNN B là 3/4 khi y = 1/2 

c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)

Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2 

10 tháng 7 2021

Bài 3 : 

a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )

b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )

Bài 4 : 

\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)

Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)

Bài 5 : 

\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)

\(=2y.2x=4xy=VP\)( đpcm ) 

26 tháng 7 2023

ko biết

 

26 tháng 7 2023

B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17

B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)

B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2

B = (\(x-y\) + 1)2 + (y - 4)2

(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 

B ≥ 0

Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương. 

 

26 tháng 7 2023

Giải giúp mik với mik cần gấp

9 tháng 8 2017

A= x^2-6x+10

A=x^2-3x-3x+9+1

A=x(x-3)-3(x-3)+1

A=(x-3)(x-3)+1

A=(x-3)^2+1

Vì (x-3)^2 \(\ge\)0\(\forall x\)

->(x-3)^2+1\(\ge\)1

=>ĐPCM

16 tháng 7 2020

1. a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)

Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow\left(x-3\right)^2+1\ge1\)

hay \(A\ge1\)\(\Rightarrow\)A luôn dương ( đpcm )

b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(=\left(x-1\right)^2+\left(3y-1\right)^2+1\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(3y-1\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\forall x,y\)

hay \(B\ge1\)\(\Rightarrow\)B luôn dương ( đpcm )

13 tháng 7 2021

a) `x (3x - 5) - x^2 (x - 4) + x (x^2 - 7x) - 10 + 5x`

`= 3x2 - 5x - x3 + 4x2 + x3 - 7x2 - 10 + 5x`

`= (3x2 + 4x2 - 7x2) + (x3 - x3) + (5x - 5x) - 10`

`= -10`

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến.

b) `(x + 1) (x2 + x + 1) - x2 (x + 2) - 2x + 5`

`= x3 + x2 + x + x2 + x + 1 - x^3 - 2x2 - 2x + 5`

`= (x^3 - x^3) + (x^2 + x^2 - 2x^2) + (x + x - 2x) + (1 + 5)`

`= 6`

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến.

`B = x^2- 2xy + y^2 + 2x - 10y + 17

`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`

`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.

 

26 tháng 7 2023

Mik cảm ơn

10 tháng 8 2016

kết bạn nhé

10 tháng 8 2016

A = -x2 + 6x - 10

= -(x2 - 6x + 10)

= -(x2 - 2.x.3 + 9 + 1)

= -(x2 - 2.x.3 + 32 +1)

= -[(x - 3)2 + 1]

Mà (x - 3)+ 1 \(\ge\)1

=> -[(x - 3)2 + 1] \(\le\)-1 \(< \)0

Vậy giá trị của A luôn âm với mọi giá trị của x.

21 tháng 8 2020

\(B=-10-x^2-6x\)

\(\Rightarrow B=-\left(x^2+6x+10\right)\)

\(\Rightarrow B=-\left(x^2+6x+9+1\right)\)

\(\Rightarrow B=-\left[\left(x+3\right)^2+1\right]\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+1\ge1\)

\(\Rightarrow-\left[\left(x+3\right)^2+1\right]\le-1\)

=> Đpcm

21 tháng 8 2020

B=\(-10-x^2-6x\)  

B=\(-x^2-6x-9-1\) 

B=\(-\left(x^2+6x+9\right)-1\)    

=\(-\left(x+3\right)^2-1\)   

Ta có : \(\left(x+3\right)^2\ge0\forall x\) 

\(-\left(x+3\right)^2\le0\) 

\(-\left(x+3\right)^2-1\le-1\)      

Vậy B luôn âm với mọi x 

15 tháng 11 2016

bài 1 áp dụng hdt là ra

bài 2 cũng z, nó tòi ra 1 số thì gtnn = cái số đó

bài 3

câu a phá hết ra

câu b nhóm hạng tử

câu a trương tự, trong ngoặc sẽ tạo ra 1 hđt

bài 4 câu a phá hết

câu b hằng đẳng thức

15 tháng 11 2016

\(A=x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\)

\(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)

Vậy A > 0 với mọi x.

\(B=x^2-2xy+y^2+1\)

\(=\left(x-y\right)^2+1\)

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+1\ge1>0\)

Vậy B > 0 với mọi x, y.

\(M=x^2-6x+12\)

\(=x^2-6x+9+3\)

\(=\left(x-3\right)^2+3\)

\(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+3\ge3\)

\(MinB=3\Leftrightarrow x=3\)

\(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)

\(x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\)

\(2x^2+6x+5-2x^2+4x-2=7\)

\(10x=7+3\)

\(10x=10\)

\(x=1\)

\(x^2+x=0\)

\(x\left(x+1\right)=0\)

\(\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)

\(x^3-\frac{1}{4}x=0\)

\(x\left(x^2-\frac{1}{4}\right)=0\)

\(x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)

\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)

\(\left(x+10\right)^2-\left(x^2+2x\right)\)

\(=x^2+20x+100-x^2-2x\)

\(=18x+100\)

\(\left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+x\right)\)

\(=x^2-4+x^3-1-x^3-x^2\)

\(=-5\)