Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\)\(M=3^0+3^2+3^4+3^6+...+3^{58}\)
\(M=\left(3^0+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{57}+3^{58}\right)\)
\(M=\left(3^0+3^2\right)+3^4\left(3^0+3^2\right)+...+3^{57}\left(3^0+3^2\right)\)
\(M=10+3^4.10+...+3^{57}.10\)
\(M=10\left(1+3^4+...+3^{57}\right)\)
\(M=\overline{...0}\)
Vậy \(M\) có chữ số tận cùng là \(0\)
Chúc bạn học tốt ~
Nhận xét: Mọi lũy thừa trong T đều có số mũ khi chia cho 4 thì dư 3 (các lũy thừa đều có dạng n4(n - 2) + 3, n thuộc {2, 3, ..., 2004}).
Theo tính chất 3 thì 23 có chữ số tận cùng là 8; 37 có chữ số tận cùng là 7; 411 có chữ số tận cùng là 4; ...
Như vậy, tổng T có chữ số tận cùng bằng chữ số tận cùng của tổng: (8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 199.(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 1 + 8 + 7 + 4 = 200(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 8 + 7 + 4 = 9019.
Vậy chữ số tận cùng của tổng T là 9.
Dễ
Chữ số tận cùng của tổng S:
(8+7+4+5+6+3+2+9)+199(1+8+7+4+5+6+3+2+9)+(1+8+7+4)
=200.(1+8+7+4+5+6+3+2+9)+8+7+4
=9019
Suy ra chữ số tận cùng của tổng T là 9
Nhận xét: Mọi lũy thừa trong T đều có số mũ khi chia cho 4 thì dư 3 (các lũy thừa đều có dạng n4(n - 2) + 3, n thuộc {2, 3, ..., 2004}).
thì 23 có chữ số tận cùng là 8; 37 có chữ số tận cùng là 7; 411 có chữ số tận cùng là 4; ...
Như vậy, tổng T có chữ số tận cùng bằng chữ số tận cùng của tổng: (8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 199.(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 1 + 8 + 7 + 4 = 200(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 8 + 7 + 4 = 9019.
Vậy chữ số tận cùng của tổng T là 9.
Nhận xét: Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, ..., 2004}).
mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng:
(2 + 3 + ... + 9) + 199.(1 + 2 + ... + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + ... + 9) + 9 = 9009.
Vậy chữ số tận cùng của tổng S là 9.
\(P=1+3+3^2+...+3^{999}\) (1)
\(\Rightarrow3P=3+3^2+3^3+....+3^{1000}\)(2)
Lấy (2) trừ cho (1) vế theo vế ta được
\(3P-P=3^{1000}-1\)
\(P=\frac{3^{1000}-1}{2}\)
Ta có \(3^{1000}=3^{20.50}=\left(3^{20}\right)^{50}=\left(3486784401\right)^{50}=\left(...01\right)^{50}=...01\)
hay \(3^{1000}\)có 2 chữ số tận cùng là 01 nên \(3^{1000}-1\)có 2 chữ số tận cùng là 00
Ta luôn có \(3^{1000}-1>1000\)
nên \(\frac{3^{1000}-1}{2}\)sẽ có 2 chữ số tận cùng là 00