Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne-3\end{cases}}\)
b) \(P=1+\frac{x+3}{x^2+5x+6}\div\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{6}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{\left(x-2\right)\left(x+2\right)}{6\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{x-2}{6}\)
\(\Leftrightarrow P=\frac{x+4}{6}\)
c) Để P = 0
\(\Leftrightarrow\frac{x+4}{6}=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Để P = 1
\(\Leftrightarrow\frac{x+4}{6}=1\)
\(\Leftrightarrow x+4=6\)
\(\Leftrightarrow x=2\)
d) Để P > 0
\(\Leftrightarrow\frac{x+4}{6}>0\)
\(\Leftrightarrow x+4>0\)(Vì 6>0)
\(\Leftrightarrow x>-4\)
a: ĐKXĐ: x<>0; x<>-2; x<>2; x<>-3
b: \(P=1+\dfrac{1}{x+2}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{1}{x+2}:\left(\dfrac{2}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{1}{x+2}:\dfrac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{1}{x+2}\cdot\dfrac{\left(x+2\right)\left(x-2\right)}{6}=1+\dfrac{x-2}{6}=\dfrac{6+x-2}{6}=\dfrac{x-4}{6}\)
c: Để P=0 thì x-4=0
=>x=4(nhận)
Khi P=1 thì x-4=6
=>x=10
d Để P>0 thì x-4>0
=>x>4
a,\(P=1+\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}+\dfrac{3x}{12-3x^2}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{x+3}{x^2+3x+2x+6}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}+\dfrac{-3x}{3\left(x^2-4\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{1}{x+2}:\left(\dfrac{2}{x-2}+\dfrac{-x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{1}{\left(x+2\right)}:\left(\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{-x}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=1+\dfrac{1}{x+2}:\dfrac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{1}{x+2}:\dfrac{6}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{1}{x+2}.\dfrac{\left(x-2\right)\left(x+2\right)}{6}=\dfrac{x-2}{6}\)
b, Để P = 0 ⇔ \(\dfrac{x-2}{6}=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Để \(P=1\Leftrightarrow\dfrac{x-2}{6}=1\Leftrightarrow x-2=6\Leftrightarrow x=8\)
c, Để P > 0 \(\Leftrightarrow\dfrac{x-2}{6}>0\Leftrightarrow x-2>6\Leftrightarrow x>8\)
a/
\(P=1+\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}+\dfrac{3x}{12-3x^2}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{x+3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{1}{x+2}:\left(\dfrac{2}{x-2}-\dfrac{3x}{3\left(x^2-4\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{1}{x+2}:\left(\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=1+\dfrac{1}{x+2}:\dfrac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{1}{x+2}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{6}=1+\dfrac{x-2}{6}\)
\(=\dfrac{6}{6}+\dfrac{x-2}{6}=\dfrac{x+4}{6}\)
b/ +) \(P=0\Leftrightarrow\dfrac{x+4}{6}=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\) (tm)
Vậy x = -4 thì P = 0
+) \(P=1\Leftrightarrow\dfrac{x+4}{6}=1\Leftrightarrow x+4=6\Leftrightarrow x=2\) (ktm)
K có gt nào của x tm P = 1
c/ \(P>0\Leftrightarrow\dfrac{x+4}{6}>0\Leftrightarrow x+4>0\Leftrightarrow x>-4\)
\(\forall x\ne\pm2;x\ne-3\)
a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)
b: \(P=\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)
\(=\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\dfrac{-1}{x}+\dfrac{1}{x-1}-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}-\dfrac{1}{x-4}+\dfrac{1}{x-5}\)
\(=\dfrac{1}{x-5}-\dfrac{1}{x}\)
\(=\dfrac{x-\left(x-5\right)}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)
c: \(x^3-x^2+2=0\)
=>\(x^3+x^2-2x^2+2=0\)
=>\(x^2\cdot\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\)
=>\(\left(x+1\right)\left(x^2-2x+2\right)=0\)
=>x+1=0
=>x=-1
Khi x=-1 thì \(P=\dfrac{5}{\left(-1\right)\left(-1-5\right)}=\dfrac{5}{\left(-1\right)\cdot\left(-6\right)}=\dfrac{5}{6}\)
a, ĐK : \(x\ne1;2;3;4;5\)
b, \(\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x-1}+\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}\)
\(=\dfrac{1}{x}-\dfrac{1}{x-5}=\dfrac{x-5-x}{x\left(x-5\right)}=\dfrac{-5}{x\left(x-5\right)}\)
\(a.P=1+\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)=\dfrac{x+3}{x+2}:\left(\dfrac{2}{x-2}-\dfrac{3}{x^2-4}-\dfrac{1}{x+2}\right)=\dfrac{x+3}{x+2}.\dfrac{\left(x+2\right)\left(x-2\right)}{2x+4-3-x+2}=\left(x+3\right).\dfrac{x-2}{x+3}=x-2\left(x\ne\pm2;x\ne-3\right)\)
\(b.P=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(KTM\right)\)
\(P=1\Leftrightarrow x-2=1\Leftrightarrow x=3\left(TM\right)\)
\(c.P>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)