Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x+2}{x-\sqrt{x}-2}-\frac{2\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(=\frac{x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{1}{\sqrt{x}-2}\)
Khi \(x=25\): \(B=\frac{1}{\sqrt{25}-2}=\frac{1}{5-2}=\frac{1}{3}\)
\(P=A\div B=\frac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\div\frac{1}{\sqrt{x}-2}=\frac{4\sqrt{x}+1}{\sqrt{x}+1}\)
\(P^2=P+2\Leftrightarrow P^2-P-2=0\Leftrightarrow\left(P-2\right)\left(P+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}P=2\\P=-1\end{cases}}\)
- \(P=2\): \(\frac{4\sqrt{x}+1}{\sqrt{x}+1}=2\Leftrightarrow4\sqrt{x}+1=2\sqrt{x}+2\Leftrightarrow x=\frac{1}{4}\)(tm)
- \(P=-1\): \(\frac{4\sqrt{x}+1}{\sqrt{x}+1}=-1\Leftrightarrow4\sqrt{x}+1=-\sqrt{x}-1\Leftrightarrow\sqrt{x}=-\frac{2}{5}\)(vô nghiệm)
1. \(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)
\(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right).\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(N=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(N=\frac{4x}{x-3}\)
Vậy \(N=\frac{4x}{x-3}\)với \(x>0,x\ne4,x\ne9\)
2.Với \(x>0,x\ne4,x\ne9\)
Ta có \(N< 0\)\(\Leftrightarrow\frac{4x}{x-3}< 0\)\(\Leftrightarrow x-3< 0\)(Vì \(x>0\Leftrightarrow4x>0\)\(với\forall x\))\(\Leftrightarrow x< 3\)
Vậy ..........
3. Với \(x>0,x\ne4,x\ne9\)
Ta có \(\left|N\right|=1\Leftrightarrow\left|\frac{4x}{x-3}\right|=1\Leftrightarrow\orbr{\begin{cases}\frac{4x}{x-3}=1\\\frac{4x}{x-3}=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}4x=3-x\\4x=x-3\end{cases}}\)\(\orbr{\begin{cases}x=\frac{3}{5} \left(N\right)\\x=-1\left(N\right)\end{cases}}\)
Vậy ...............
\(a,x=7-4\sqrt{3}=4-2.2\sqrt{3}+3\) (Thỏa mãn ĐKXĐ)
\(=\left(2-\sqrt{3}\right)^2\)
\(B=\frac{2}{\sqrt{x}-2}=\frac{2}{\sqrt{\left(2-\sqrt{3}\right)^2}-2}\)
\(=\frac{2}{2-\sqrt{3}-2}=-\frac{2\sqrt{3}}{3}\)
\(b,P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right)\)
\(=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(=\frac{2}{\sqrt{x}-2}:\frac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{2}{\sqrt{x}-2}:\frac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{2}{\sqrt{x}-2}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(P=\frac{4}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{4}{3}\)
\(\Leftrightarrow3\left(\sqrt{x}+2\right)=4\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow3\sqrt{x}+6=4\sqrt{x}+4\)
\(\Leftrightarrow6-4=4\sqrt{x}-3\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)(ko thỏa mãn ĐKXĐ)
=>pt vo nghiệm
d,\(\left(\sqrt{x}+1\right)P-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\frac{\sqrt{x}+2}{\sqrt{x}+1}-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)
\(\Leftrightarrow\sqrt{x}+2-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)
\(\Leftrightarrow-4\sqrt{x-1}+28=-6x+10\sqrt{5x}\)
\(\Leftrightarrow x=5\)
a) x = 16 (tm) => A = \(\frac{\sqrt{16}-2}{\sqrt{16}+1}=\frac{4-2}{4+1}=\frac{2}{5}\)
b) B = \(\left(\frac{1}{\sqrt{x}+5}-\frac{x+2\sqrt{x}-5}{25-x}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)
B = \(\frac{\sqrt{x}-5+x+2\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)
B = \(\frac{x+3\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{x+5\sqrt{x}-2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
c) P = \(\frac{B}{A}=\frac{\sqrt{x}-2}{\sqrt{x}+2}:\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
=> \(P\left(\sqrt{x}+2\right)\ge x+6\sqrt{x}-13\)
<=> \(\frac{\sqrt{x}+1}{\sqrt{x}+2}.\left(\sqrt{x}+2\right)-x-6\sqrt{x}+13\ge0\)
<=> \(-x-6\sqrt{x}+13+\sqrt{x}+1\ge0\)
<=> \(-x-5\sqrt{x}+14\ge0\)
<=> \(x+5\sqrt{x}-14\le0\)
<=> \(x+7\sqrt{x}-2\sqrt{x}-14\le0\)
<=> \(\left(\sqrt{x}+7\right)\left(\sqrt{x}-2\right)\le0\)
Do \(\sqrt{x}+7>0\) với mọi x => \(\sqrt{x}-2\le0\)
<=> \(\sqrt{x}\le2\) <=> \(x\le4\)
Kết hợp với Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)25
và x thuộc Z => x = {0; 1; 2; 3}
d) M = \(3P\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\) <=>M = \(3\cdot\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\)
M = \(\frac{3\sqrt{x}+3}{x+\sqrt{x}+4}=\frac{x+\sqrt{x}+4-x+2\sqrt{x}-1}{\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{15}{4}}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}}\le1\)(Do \(\left(\sqrt{x}-1\right)^2\ge0\) và \(\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}>0\))
Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\) <=> \(x=1\)
Vậy MaxM = 1 khi x = 1
\(a,ĐKXĐ:x\ge0;x\ne4\)
Ta có: \(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}-\frac{5\sqrt{x}+2}{x-4}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2x-4\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
Vậy....
\(b,ĐKXĐ:x\ge0;x\ne4\)
\(ĐểP=2\Rightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}=2\)
\(\Leftrightarrow2\left(\sqrt{x}+2\right)=3\sqrt{x}\)
\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)
\(\Leftrightarrow3\sqrt{x}-2\sqrt{x}=4\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\text{(Thỏa mãn ĐKXĐ)}\)
Vậy...
a)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}-\frac{5\sqrt{x}+2}{x-4}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
b) Thay P = 2 vào , ta được :
\(2=\frac{3\sqrt{x}}{\sqrt{x}+2}\Leftrightarrow2\sqrt{x}+4=3\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
Vậy x = 16 thì P = 2
a) Đkxđ: \(x\ne4\)
Thay x=9 vào A ta được:
\(\frac{9+3}{\sqrt{9}-2}=\frac{12}{3-2}=12\)
b)Ta có \(B=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(\Rightarrow B=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c) TA có \(\frac{4B}{A}=\frac{4\sqrt{x}}{\sqrt{x}-2}:\frac{x+3}{\sqrt{x}-2}=\frac{\left(4\sqrt{x}\right).\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(x+3\right)}\)
\(=\frac{4\sqrt{x}}{x+3}\)
Để \(\frac{4B}{A}=\frac{4\sqrt{x}}{x+3}\in Z\)thì \(x+3\inƯ\left(4\right);x=a^2\left(a\in Z\right)\)
Với \(x+3\inƯ\left(4\right)\Rightarrow x\in\left\{-5;-4;-2;\pm1;7\right\}\)mà \(x=a^2\Rightarrow x=1\left(TM\right)\)
Vậy x=1
Hok tốt!
a) N = \(\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
N = \(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
N = \(\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
N = \(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
N = \(\frac{\sqrt{x}}{\sqrt{x}-2}\)
b) Với x \(\ge\)0; x \(\ne\)4
Ta có: N = \(\frac{1}{-3}\) <=> \(\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{1}{-3}\)
=> \(-3\sqrt{x}=\sqrt{x}-2\)
<=> \(-4\sqrt{x}=-2\)
<=> \(\sqrt{x}=\frac{1}{2}\)
<=> \(x=\frac{1}{4}\)
c) x = 25 => N = \(\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{5-3}=\frac{5}{2}\)
a) \(N=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
\(N=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(N=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(N=\frac{\left(\sqrt{x}+2\right)\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(N=\frac{\sqrt{x}}{\sqrt{x}-2}\)
b) \(N=-\frac{1}{3}\)
\(\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}=-\frac{1}{3}\)
\(\Leftrightarrow3\sqrt{x}=2-\sqrt{x}\)
\(\Leftrightarrow4\sqrt{x}=2\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)
c) \(N=\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{5-2}=\frac{5}{3}\)