\(\left(\frac{x+3}{x-3}+\frac{18}{9-x^2}+\frac{x-3}{x+3}\right):\left(1-\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(N=\left(\frac{x+3}{x-3}+\frac{18}{9-x^2}+\frac{x-3}{x+3}\right):\left(1-\frac{x+1}{x+3}\right)\)

\(=\left(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\frac{18}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\right):\left(\frac{x+3}{x+3}-\frac{x+1}{x+3}\right)\)

\(=\frac{x^2+6x+9-18-\left(x^2-6x+9\right)}{\left(x-3\right)\left(x+3\right)}:\frac{2}{x+3}\)

\(=\frac{x^2+6x-9-x^2+6x-9}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{2}\)

\(=\frac{12x-18}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{2}\)

\(=\frac{12x-18}{x-3}\cdot\frac{1}{2}\)

\(=\frac{12x-18}{2x-6}\)

b)

ĐKXĐ: \(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)

Đặt \(N=-\frac{1}{2}\)

\(\Leftrightarrow\frac{12x-18}{2x-6}=-\frac{1}{2}\)

\(\Leftrightarrow12x-18=\frac{6-2x}{2}\)

\(\Leftrightarrow12x-18=3-x\)

\(\Leftrightarrow12x-18-3+x=0\)

\(\Leftrightarrow13x-21=0\)

\(\Leftrightarrow13x=21\)

hay \(x=\frac{21}{13}\)(tm)

Vậy: Khi \(N=-\frac{1}{2}\) thì \(x=\frac{21}{13}\)

c) Để N<0 thì 12x-18 và 2x-6 khác dấu

*Trường hợp 1:

\(\left\{{}\begin{matrix}12x-18>0\\2x-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x>18\\2x< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\frac{3}{2}\\x< 3\end{matrix}\right.\)\(\Leftrightarrow\frac{3}{2}< x< 3\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}12x-18< 0\\2x-6>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x< 18\\2x>6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \frac{3}{2}\\x>3\end{matrix}\right.\)(vô lý)

Vậy: Khi N<0 thì \(\frac{3}{2}< x< 3\)

21 tháng 6 2021

a, sửa đề : \(C=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}+\frac{1}{2-x}\)ĐK : \(x\ne-3;2\)

\(=\frac{\left(x+2\right)\left(x-2\right)-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-12-x}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)

b, Ta có : \(x^2-x=2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\Leftrightarrow x=-1;x=2\)

Kết hợp với giả thiết vậy x = -1 

Thay x = -1 vào biểu thức C ta được : \(\frac{-1-4}{-1-2}=-\frac{5}{-3}=\frac{5}{3}\)

c, Ta có : \(C=\frac{1}{2}\Rightarrow\frac{x-4}{x-2}=\frac{1}{2}\Rightarrow2x-8=x-2\Leftrightarrow x=6\)( tm )

d, \(C>1\Rightarrow\frac{x-4}{x-2}>1\Rightarrow\frac{x-4}{x-2}-1>0\Leftrightarrow\frac{x-4-x+2}{x-2}>0\Leftrightarrow\frac{-2}{x-2}>0\)

\(\Rightarrow x-2< 0\Leftrightarrow x< 2\)vì -2 < 0 

21 tháng 6 2021

e, tự làm nhéee 

f, \(C< 0\Rightarrow\frac{x+4}{x+2}< 0\)

mà x + 4 > x + 2 

\(\hept{\begin{cases}x+4>0\\x+2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-4\\x< -2\end{cases}\Leftrightarrow-4< x< -2}}\)

Vì \(x\inℤ\Rightarrow x=-3\)( ktmđk )

Vậy ko có x nguyên để C < 0 

g, Ta có :  \(\frac{x+4}{x+2}=\frac{x+2+2}{x+2}=1+\frac{2}{x+2}\)

Để C nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x + 21-12-2
x-1-30-4

h, Ta có : \(D=C\left(x^2-4\right)=\frac{x+4}{x+2}.\frac{\left(x-2\right)\left(x+2\right)}{1}=x^2+2x-8\)

\(=\left(x+1\right)^2-9\ge-9\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTNN D là -9 khi x = -1 

a) ĐKXĐ: x∉{3;-3}

Ta có: \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)

\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right):\left(\frac{x+3}{x+3}-\frac{1}{x+3}\right)\)

\(=\frac{21+x^2-x-12-\left(x^2-4x+3\right)}{\left(x-3\right)\left(x+3\right)}:\frac{x+2}{x+3}\)

\(=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+2}\)

\(=\frac{3\left(x+2\right)}{x-3}\cdot\frac{1}{x+2}=\frac{3}{x-3}\)

b) Ta có: |2x+1|=5

\(\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Do x=-3 không thỏa mãn ĐKXĐ nên ta chỉ tính giá trị của B tại x=2

Thay x=2 vào biểu thức \(B=\frac{3}{x-3}\), ta được:

\(\frac{3}{2-3}=\frac{3}{-1}=-3\)

Vậy: -3 là giá trị của biểu thức \(B=\frac{3}{x-3}\) tại x=2

c) Ta có: \(B=\frac{-3}{5}\)

\(\frac{3}{x-3}=\frac{-3}{5}\)

\(\Leftrightarrow x-3=\frac{5\cdot3}{-3}=\frac{15}{-3}=-5\)

hay x=-2(tm)

Vậy: Khi \(B=\frac{-3}{5}\) thì x=-2

d) Để B<0 thì \(\frac{3}{x-3}< 0\)

mà 3>0

nên x-3<0

hay x<3

Vậy: Khi x<3 và x≠-3 thì B<0