Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(N=\left(\dfrac{1}{y-1}-\dfrac{y}{1-y^3}.\dfrac{y^2+y+1}{y+1}\right):\dfrac{1}{y^2-1}\)
\(N=\left(\dfrac{1}{y-1}+\dfrac{y}{y^3-1}.\dfrac{y^2+y+1}{y+1}\right).\left(y^2-1\right)\)
\(N=\left(\dfrac{1}{y-1}+\dfrac{y}{\left(y-1\right)\left(y^2+y+1\right)}.\dfrac{y^2+y+1}{y+1}\right).\left(y^2-1\right)\)
\(N=\left(\dfrac{1}{y-1}+\dfrac{y}{\left(y-1\right)\left(y+1\right)}\right).\left(y^2-1\right)\)
\(N=\left(\dfrac{1}{y-1}+\dfrac{y}{\left(y-1\right)\left(y+1\right)}\right).\left(y-1\right).\left(y+1\right)\)
\(N=y+1+y\)
N=2y+1
b) Khi y=1/2 thì N=\(2.\dfrac{1}{2}+1=1+1=2\)
c) N dương <=> N=2y+1>0 <=> 2y>-1 <=> y>-1/2

a, \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)
\(=\left(\frac{1}{y-1}-\frac{y}{\left(1-y\right)\left(1+y+y^2\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)
\(=\left(\frac{1}{y-1}+\frac{y\left(y^2+y+1\right)}{\left(y+1\right)^2\left(y^2+y+1\right)}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)
\(=\left(\frac{1}{y-1}+\frac{y}{\left(y+1\right)^2}\right):\frac{1}{\left(y-1\right)\left(x+1\right)}\)
\(=\left(\frac{\left(y+1\right)^2+y\left(y-1\right)}{\left(y-1\right)\left(y+1\right)^2}\right).\frac{\left(y-1\right)\left(y+1\right)}{1}=\frac{y^2+2y+1+y^2-y}{y+1}=\frac{2y^2+y+1}{y+1}\)
b, Thay y = 1/2 ta có :
\(\frac{2.\left(\frac{1}{2}\right)^2+\frac{1}{2}+1}{\frac{1}{2}+1}=\frac{\frac{1}{2}+\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}+\frac{2}{2}}=\frac{\frac{5}{2}}{\frac{3}{2}}=\frac{5}{12}\)

a) giải phương trình
\(\dfrac{2x^2-3x-2^{ }}{_{ }x^2-4}\) = 2
=>\(\dfrac{2x^2-3x-2}{x^2-4}\) = \(\dfrac{2\left(x^2-4\right)}{x^2-4}\)
=>2x2 - 3x - 2 = 2(x2 - 4)
<=>2x2 -3x - 2 = 2x2 - 8
<=>2x2 - 2x2 - 3x = -8 + 2
<=>-3x = -6
<=> x = 2
Vậy không tồn tại giá trị nào của x thỏa mãn điều kiện của bài toán
b) Ta phải giải phương trình
\(\dfrac{6x-1}{3x+2}\) = \(\dfrac{2x+5}{x-3}\)
=>x = \(\dfrac{-7}{38}\)
c) Ta phải giải phương trình
\(\dfrac{y+5}{y-1}\) - \(\dfrac{y+1}{y-3}\) = \(\dfrac{-8}{\left(y-1\right)\left(y+1\right)}\)
không tồn tại giá trị nào của y thỏa mãn điều kiện của bài toán

a) ĐKXĐ : \(y\ne\pm1\)
\(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right)\div\frac{1}{y^2-1}\)
\(=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y^2+y+1\right)}.\frac{y^2+y+1}{y+1}\right)\div\frac{1}{y^2-1}\)
\(=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right)\div\frac{1}{y^2-1}\)
\(=\frac{y+1+y}{\left(y-1\right)\left(y+1\right)}\div\frac{1}{\left(y-1\right)\left(y+1\right)}\)
\(=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}.\left(y-1\right)\left(y+1\right)\)
\(=2y+1\)
Vậy \(N=2y+1\)khi \(y\ne\pm1\)
b) Với \(y=\frac{1}{2}\); phương trình N trở thành :
\(N=2.\frac{1}{2}+1=2\)
Vậy N=2 khi \(y=\frac{1}{2}\)
c) Để N luôn dương
\(\Leftrightarrow2y+1>0\)
\(\Leftrightarrow2y>-1\)
\(\Leftrightarrow y>\frac{-1}{2}\)
Kết hợp ĐKXĐ ta có : \(y>\frac{-1}{2};y\ne\pm1\)
Vậy N luôn dương khi \(y>\frac{-1}{2};y\ne\pm1\)

a., đk y khác cộng trừ 1
N=\(\left(\frac{1}{y-1}+\frac{y}{\left(y^3-1\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)
N=\(\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right).\left(y-1\right)\left(y+1\right)\)
N=\(\frac{y+1+y}{\left(y-1\right)\left(y+1\right)}.\left(y-1\right)\left(y+1\right)\)
N= \(2y+1\)
Vậy N=2y+1 với y khác cộng trừ 1
b, Thay y= \(\frac{1}{2}\) ( t/m đk y khác cộng trừ 1 )vào biểu thức N ta được:
N= \(2.\frac{1}{2}+1=1+1=2\)
Vậy N=2 với y = 1/2
c, Để N luôn dương thì: 2y+1>0
<=> 2y>-1
<=>y>\(\frac{-1}{2}\)( t/ m đk y khác cộng trừ 1)
Vậy với y>-1/2 thì N luôn dương
a, \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)
\(N=\left(\frac{1}{y-1}+\frac{y}{y^3-1}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)
\(N=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y^2+y+1\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)
\(N=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right):\frac{1}{y^2-1}\)
\(N=\left(\frac{y+1}{\left(y-1\right)\left(y+1\right)}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)
\(N=\frac{y+1+y}{\left(y-1\right)\left(y+1\right)}:\frac{1}{\left(y-1\right)\left(y+1\right)}\)
\(N=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}.\left(y-1\right)\left(y+1\right)\)
\(N=2y+1\)
b, Tại \(y=\frac{1}{2}\) ta có :
\(N=2.\frac{1}{2}+1\)
\(\Rightarrow N=1+1=2\)
c, Để N luôn có giá trị dương thì \(y\in N\).

Bài 1 rút gọn bc tự làm :
\(B=\dfrac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
\(B=\dfrac{3x^3-3y^2-4y^2+4y+y-1}{2y^3-2y^2+y^2-y+3y-3}\)
\(B=\dfrac{3y^2\left(y-1\right)-4y\left(y-1\right)+\left(y-1\right)}{2y^2\left(y-1\right)+y\left(y-1\right)-3\left(y-1\right)}\)
\(B=\dfrac{\left(3y^2-4y+1\right)\left(y-1\right)}{\left(2y^2+y-3\right)\left(y-1\right)}\)
\(B=\dfrac{3y^2-3y-y+1}{2y^2-2y+3y-3}=\dfrac{3y\left(y-1\right)-\left(y-1\right)}{2y\left(y-1\right)+3\left(y-1\right)}\)
\(B=\dfrac{\left(3y-1\right)\left(y-1\right)}{\left(3y+2\right)\left(y-1\right)}=\dfrac{3y-1}{3y+2}\)
Bài 2 )
a ) \(x+\dfrac{1}{x}=3\)
\(\Leftrightarrow x^2+2x\dfrac{1}{x}+\dfrac{1}{x^2}=9\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}=1\)
b ) \(\left(x+\dfrac{1}{x}\right)^3=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+\dfrac{3}{x}+3x=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3\left(\dfrac{1}{x}+x\right)=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}=18\)
a: \(N=\left(\dfrac{1}{y-1}+\dfrac{y}{\left(y-1\right)\left(y^2+y+1\right)}\cdot\dfrac{y^2+y+1}{y+1}\right)\cdot\dfrac{y^2-1}{1}\)
\(=\left(\dfrac{1}{y-1}+\dfrac{y}{\left(y-1\right)\left(y+1\right)}\right)\cdot\dfrac{\left(y-1\right)\left(y+1\right)}{1}\)
\(=\dfrac{2y+1}{1}=2y+1\)
b: Thay y=1/2 vào N, ta được:
\(N=2\cdot\dfrac{1}{2}+1=2\)
c: Để N>0 thì 2y+1>0
hay y>-1/2