Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=x^3y^2\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+xy\left(2-1\right)+y-1=xy+y-1\)
Bậc là 2
b: Thay x=0,1 và y=-2 vào A, ta được:
\(A=-2\cdot0.1+\left(-2\right)-1=-0.2-1-2=-3.2\)
a, \(M=x^2y+\frac{1}{3}xy^2+\frac{3}{5}xy^2-2xy+3x^2y-\frac{2}{3}\)
\(M=\left(x^2y+3x^2y\right)+\left(\frac{1}{3}xy^2+\frac{3}{5}xy^2\right)-2xy-\frac{2}{3}\)
\(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\)
b, Giá trị của biểu thức \(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\) tại \(x=-1\) và \(y=\frac{1}{2}\)
\(M=4.\left(-1\right)^2.\frac{1}{2}+\frac{8}{15}.\left(-1\right).\left(\frac{1}{2}\right)^2-2.\left(-1\right).\frac{1}{2}-\frac{2}{3}\)
\(M=4.1.\frac{1}{2}+\frac{8}{15}.\left(-1\right).\left(\frac{1}{4}\right)+1-\frac{2}{3}\)
\(M=2-\frac{2}{15}+1-\frac{2}{3}\)
\(M=\left(2+1\right)+\left(-\frac{2}{15}-\frac{2}{3}\right)\)
\(M=3+\left(\frac{-4}{5}\right)\)
\(M=\frac{11}{5}\)
Vậy giá trị của biểu thức \(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\) tại \(x=-1\) và \(y=\frac{1}{2}\) bằng \(\frac{11}{5}\)
a) \(A=\left(\frac{-1}{2}xy^2\right)z^3+\frac{3}{4}x^2y\left(2y\right)^3\)
\(A=\frac{-1}{2}xy^2z^3+6x^2y^4\)
b) Thay x = -1; y= 1; z = -1/2
có: A = -1/2 . (-1) . 1^2 . (-1/2) ^3 + 6. (-1)^2 . 1^4
A = -1/54 + 6
A = 323/54
a.\(A=3xy^2+8xy+1\)
b.Thế `x=-1/2;y=-1` vào `A` ta được:
\(A=3.\left(-\dfrac{1}{2}\right).\left(-1\right)^2+8.\left(-\dfrac{1}{2}\right).\left(-1\right)+1\)
\(A=-\dfrac{3}{2}+4+1\)
\(A=\dfrac{-3+10}{2}\)
\(A=\dfrac{7}{2}\)
a: \(A=\left(-2xy^2+5xy^2\right)+\left(3xy+5xy\right)+1=3xy^2+8xy+1\)
b: Khi x=-1/2 và y=-1 thì \(A=3\cdot\dfrac{-1}{2}\cdot1+8\cdot\dfrac{-1}{2}\cdot\left(-1\right)+1\)
\(=-\dfrac{3}{2}+4+1=5-\dfrac{3}{2}=\dfrac{7}{2}\)
a, \(M=2x^3+xy^2-3xy+1\)
b, Thay x = -1 ; y = 2 ta được
M = -2 - 2 + 6 + 1 = 3