\(M=\frac{y}{\sqrt{xy}-x}+\frac{x}{\sqrt{xy}+y}-\frac{x+y}{\sqrt{xy}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2019

em viết nhầm đề nha.M = \(\frac{y}{\sqrt{xy}-x}+\frac{x}{\sqrt{xy}+y}-\frac{x+y}{\sqrt{xy}}\)mới đúng

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

29 tháng 7 2018

a)  \(\frac{\sqrt{4mn^2}}{\sqrt{20m}}=\sqrt{\frac{4mn^2}{20m}}=\sqrt{\frac{n^2}{5}}=\frac{n}{\sqrt{5}}\)

b)  \(\frac{\sqrt{16a^4b^6}}{\sqrt{12a^6b^6}}=\sqrt{\frac{16a^4b^6}{12a^6b^6}}=\sqrt{\frac{4}{3a^2}}=\frac{2}{\sqrt{3}.\left|a\right|}=-\frac{2}{a\sqrt{3}}\)

d)  \(\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)

e) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

26 tháng 8 2019

3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)

=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)

AD bđt cosi vs hai số dương có:

\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)

\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)

\(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))

=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)

<=> P \(\ge4.5\)

Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)

=> a=2,b=3

Vậy minP=4.5 <=>a=1,b=2

3 tháng 8 2020

Ta có : \(P=\frac{\frac{\left(x-y\right)^3}{\left(\sqrt{x}+\sqrt{y}\right)^3}+2x\sqrt{x}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}+\frac{3\left(\sqrt{xy}-y\right)}{x-y}\)

=> \(P=\frac{\frac{\left(\sqrt{x}+\sqrt{y}\right)^3\left(\sqrt{x}-\sqrt{y}\right)^3}{\left(\sqrt{x}+\sqrt{y}\right)^3}+2x\sqrt{x}+y\sqrt{y}}{\sqrt{x}^3+\sqrt{y}^3}+\frac{3\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

=> \(P=\frac{\left(\sqrt{x}-\sqrt{y}\right)^3+2x\sqrt{x}+y\sqrt{y}}{\sqrt{x}^3+\sqrt{y}^3}+\frac{3\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=> \(P=\frac{x\sqrt{x}-3x\sqrt{y}+3y\sqrt{x}-y\sqrt{y}+2x\sqrt{x}+y\sqrt{y}}{\left(x+y\right)\left(x-\sqrt{xy}+y\right)}+\frac{3\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=> \(P=\frac{3x\sqrt{x}-3x\sqrt{y}+3y\sqrt{x}}{\left(x+y\right)\left(x-\sqrt{xy}+y\right)}+\frac{3\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=> \(P=\frac{3\sqrt{x}\left(x-\sqrt{xy}+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}+\frac{3\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=> \(P=\frac{3\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{3\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=> \(P=\frac{3\sqrt{x}+3\sqrt{y}}{\sqrt{x}+\sqrt{y}}=\frac{3\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=3\)