Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(2x^2+3x+1=0\)
\(\Rightarrow2x.\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(2x+1\right).\left(x+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}2x+1=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}2x=-1\\x=-1\end{cases}}}\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\x=-1\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\frac{-1}{2}\\x=-1\end{cases}}\)là nghiệm của đa thức
=2x^2+2x+x+1
=2x(x+1)+(x+1)
=(2x+1)(x+1)
dùng máy tính cx tìm đc nghiệm nha bạn
Ta có:M là trung điểm của BC=>BM=MC
Mà IM=\(\frac{BM}{2}\)(I là trung điểm của BM)
=>IM\(=\frac{MC}{2}\)(1)
Vì IA=IE(gt)
=>CI là đường trung tuyến ứng với cạnh AE của \(\Delta AEC\)(2)
Từ (1),(2)=>M là giao điềm của 3 đường trung tuyến của \(\Delta AEC\)
Vì N là trung điểm của EC(gt)
=>AN là đường trung tuyến ứng với cạnh EC của \(\Delta AEC\)
Xét \(\Delta AEC\)có:
AN là đường trung tuyến ứng với cạnh EC
M là giao điểm của 3 đường trung tuyến
=>A,M,N thẳng hàng
Mình ko biết vẽ hình ở đâu nên ko vẽ mà chỉ trình bày thôi.
Bài giải
*Ta có:
+ M là td của BC (gt) => MB=MC(t/c)
+ I là td của BM (gt) => IM= IB(t/c)
mà MB=MC(cmt) => IM=IB=1/2 MC
=> M là trọng tâm ( t/c trọng tâm )
*Xét tam giác AEC có :
I là td của AE (gt) =>CI là trung tuyến
N là td của EC (gt) =>AN là trung tuyến
mà M là trọng tâm (cmt) => M thuộc AN
=> A,M,N thẳng hàng (dpcm)
a) \(\frac{2x-3}{4-x}=\frac{4-x}{2x-3}\)
\(\left(2x-3\right)\left(2x-3\right)=\left(4-x\right)\left(4-x\right)\)
\(\left(2x-3\right)^2=\left(4-x\right)^2\)
\(4x^2-12x+9=16-8x+x^2\)
\(4x^2-12x+9-16+8x-x^2=0\)
\(3x^2-4x-7=0\)
\(3x^2+3x-7x-7=0\)
\(3x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(x+1\right)\left(3x-7\right)=0\)
\(\hept{\begin{cases}x+1=0\\3x-7=0\end{cases}}\)
\(\hept{\begin{cases}x=-1\\x=\frac{7}{3}\end{cases}}\)
Ta có: (x - 2)2 ≥ 0 mà (x - 2)2(x + 1)(x - 4) < 0
=> (x + 1)(x - 4) < 0
Th1: \(\hept{\begin{cases}x+1>0\\x-4< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 4\end{cases}}\Rightarrow-1< x< 4\)
Th2: \(\hept{\begin{cases}x+1< 0\\x-4>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -1\\x>4\end{cases}}\)(Vô lý)
Vậy..
M<1 => \(\frac{x-3}{x+2}\)<1
<=> \(\frac{x-3}{x+2}\)- 1 < 0
<=> \(\frac{x-3}{x+2}\)-\(\frac{x+2}{x+2}\)< 0
<=> \(\frac{x-3-x-2}{x+2}\)< 0
<=> -5 < 0
=> Vô nghiệm