Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Với \(a>0;a\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{\sqrt{a}-1+a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{a-1}{a+\sqrt{a}}\)
b, Ta có : \(1=\frac{a+\sqrt{a}}{a+\sqrt{a}}\)mà \(a-1=\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)
\(a+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)vì \(\sqrt{a}-1< \sqrt{a}\)
Vậy \(\frac{a-1}{a+\sqrt{a}}< 1\)hay \(M< 1\)
a) B= \(\frac{1}{\sqrt{a}}\)(ĐKXĐ: a,b>0) B) Khi a= \(6+2\sqrt{5}\)thì B=\(\frac{1}{\sqrt{\left(\sqrt{5}+1\right)^2}}\)=\(\frac{1}{\sqrt{5}+1}\) C) Do \(\sqrt{a}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>-1\)
https://vndoc.com/de-thi-hoc-sinh-gioi-mon-toan-lop-9-nam-hoc-2015-2016-truong-thcs-thanh-van-ha-noi/download
Tính được
\(M=\frac{6\sqrt{a}}{\left(\sqrt{a}+1\right)^2}\)
Với mọi a>0; \(a\ne1,\)ta có: \(\frac{6\sqrt{a}}{\left(\sqrt{a}+1\right)^2}>0\Leftrightarrow M>0\left(1\right)\)
Lại có:
\(a-\sqrt{a}+1>0\forall a>0\)
\(\Leftrightarrow2a+4\sqrt{a}+2>6\sqrt{a}\)\(\Rightarrow2>\frac{6\sqrt{a}}{\left(\sqrt{a}+1\right)^2}\Leftrightarrow M< 2\)(2)
Từ (1) và (2) => M đạt giá trị nguyên khi M=1
Bạn tự tìm a nha...
ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
a) \(M=\) \(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(M=\frac{\sqrt{a}-1}{\sqrt{a}}\)
b) Xét hiệu: \(M-1\)
\(M-1=\frac{\sqrt{a}-1}{\sqrt{a}}-1=\frac{\sqrt{a}-1}{\sqrt{a}}-\frac{\sqrt{a}}{\sqrt{a}}=\frac{-1}{\sqrt{a}}\)
Vì \(\left\{{}\begin{matrix}-1< 0\\\sqrt{a}\ge0\end{matrix}\right.\)
\(\Rightarrow\frac{-1}{\sqrt{a}}< 0\)\(\Leftrightarrow M-1< 0\Leftrightarrow M< 1\)
Vậy: \(M< 1\)