Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
a: \(P=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
b: \(P=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi x=1/4
\(A=\left[\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}-\frac{2\sqrt{x}-1}{\sqrt{x}+2}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(A=\left[\frac{2\left(x-2\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(x-4\right)\left(\sqrt{x}+2\right)}-\frac{\left(2\sqrt{x}-1\right)\left(x-4\right)}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(A=\left[\frac{2\left(x-2\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-\left(2\sqrt{x}-1\right)\left(x-4\right)}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(A=\left[\frac{x+2\sqrt{x}}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(A=\left[\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(x-4\right)\left(\sqrt{x+2}\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(A=\frac{\sqrt{x}}{x-4}\cdot\frac{\sqrt{x}-2}{\sqrt{x}}\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-4\right)}\)
\(A=\frac{\sqrt{x}-2}{x-4}\)
a, \(M=\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\) (ĐK : \(\forall x\in R\))
\(=\sqrt{\left(x-2\right)^2}-\sqrt{\left(x+2\right)^2}\)
* Nếu x\(\ge2\Rightarrow M=x-2-x-2=-4\)
*Nếu x<2 => M=2-x-x-2=-2x
b,Để M=2\(\ne-4\)
=>M=-2x
=>-2x=-4
=>x=2
__________________________________________________________________________________________
P=\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
* Nếu \(x\ge2\Rightarrow P=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)
* Nếu x<2 =>P=\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
VẬY.......
Tk nha!