\(\frac{x^2-5}{x^2-2}\left(x\inℤ\right)\). Tìm số nguyên x để M là số n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

M= \(\frac{x^2-5}{x^2-2}\)=\(\frac{x^2-2-3}{x^2-2}\)= 1 - \(\frac{3}{x^2-2}\)

Để M là số nguyên thì ( x2 - 2) phải thuộc Ư(3)={1;3;-1;-3}

Với x-2=1 => x= 3 ( loại vì x là số nguyên) ; Với x-2=3 => x2=5( loại vì x là số nguyên)

Với x2-2=-1 =>x=1 hoặc x=-1(nhận);  Với x2 -2=-3 =>x2 =-1( vô lí) 

Vậy x=-1 và x=1

14 tháng 9 2018

 Để M là số nguyên thì x bình-5 chia hết cho x bình-2

Ta có:

x bình-5 = x bình-2-3

Vậy:

(x bình-2)-3 sẽ chia hết cho x bình-2

 Mà x bình-2 chia hết cho x bình-2 (là sẽ bằng ko?)

Nên -3 sẽ chia hết cho x bình-2

Ư(-3)=-3 ;3;1 ; -1 

Suy ra:

x*2 -2 = 1 suy ra x= tập hợp rỗng ( ko tính đc)

x*2-2= -1 suy ra x= 1

x*2-2=3 suy ra x=tập hợp rỗng(ko tính được)

x*2-2=-3 suy ra x=tập hợp rỗng(ko tính được)

Vậy x=1

26 tháng 8 2021

3. a) \(đk:x\ne1;x\ne-2\)

Ta có: \(A=\frac{3x-3+2}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)

Để A là số nguyên thì x là số nguyên và x-1 là ước của 2 . Ta có bảng:

x-11-12-2
x203-1

Lại có: \(B=\frac{2x^2+4x-3x-6+5}{x+2}=\frac{2x\left(x+2\right)-3\left(x+2\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)

Để B là số nguyên thì x là số nguyên và x+2 là ước của 5. Ta có bảng:

x+21-15-5
x-1-33-7

b) Để A và B cùng nguyên thì \(x\in\left\{-1;3\right\}\)

24 tháng 6 2020

Ta có: \(N=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)

Để M,N đồng thời có giá trị nguyên thì \(2⋮\left(x+3\right)\)và \(3⋮\left(x-1\right)\)

hay \(x+3\inƯ\left(2\right)\)và \(x-1\inƯ\left(3\right)\)

Ta có bảng:

x+31-12-2
x-2-4-1-5
x-11-13-3
x204

-2

Vay \(x\in\left\{-5;-4;-2;-1;0;2;4\right\}\)

7 tháng 2 2020

1

\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-6}{8}=\frac{3y+15}{9}=\frac{4z-16}{20}\)

\(=\frac{2x+3y-4z-6+15+16}{-3}=-\frac{100}{3}\)

Làm nốt

2

\(\left|x-2\right|\ge0\) dấu "=" xảy ra tại x=2

\(\left(x-y\right)^2\ge0\) dấu "=" xảy ra tại x=y

\(3\sqrt{z^2+9}\ge3\sqrt{9}=9\) dấu "=" xảy ra tại z=0

\(\Rightarrow C\ge0+0+9+16=25\) dấu "=" xảy ra tại x=y=2;z=0

5

Chứng minh \(1< M< 2\) là OK

27 tháng 6 2019

a) Ta có: 

Để M = \(\frac{x+3}{2}\)\(\in\)Z <=> \(x+3⋮2\) <=> \(x+3\in\)B(2) = {0; 2; 4; ....}

                                                           <=> \(x\in\){-3; -1; 1; ....}

b) Để N = \(\frac{7}{x-1}\)\(\in\)Z <=> \(7⋮x-1\) <=> \(x-1\in\)Ư(7) = {1; -1; 7; -7}

Lập bảng :

x - 11 -1 7 -7
   x 2  0 8 -6

Vậy ...

c) Ta có: P = \(\frac{x-1}{x+1}=\frac{x+1-2}{x+1}=1-\frac{2}{x+1}\)

Để P \(\in\)Z <=> \(2⋮x+1\) <=> \(x+1\in\)Ư(2) = {1; -1; 2; -2}

Lập bảng: 

x + 1 1 -1 2 -2
   x 0 -2 1 -3 

Vậy ...

27 tháng 6 2019

để M nguyên thì \(\frac{x+3}{2}\) nguyên 

=> (x+3) \(\in\)Ư(2)={-2:-1:1:2}

lập bảng ra tìm x nha bn ~!!

mấy ý kia tương tự !

8 tháng 1 2019

Để \(A=\frac{5}{x^2-3}\)có giá trị nguyên thì \(5⋮x^2-3\)hay \(x^2-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)mà \(x^2-3\ge-3\)suy ra \(x^2-3\inƯ\left(5\right)=\left\{\pm1;5\right\}\) 

Ta có bảng:

\(x^2-3\)1-15
\(x^2\)428
\(x\)\(\pm2\)\(\pm\sqrt{2}\)\(\pm\sqrt{8}\)
KLT/mLL

Vậy đáp số của bài toán: \(x\in\left\{\pm2\right\}\)

8 tháng 1 2019

Ư(5)={\(\pm1;\pm5\)} mới đúng

27 tháng 10 2019

\(1.\frac{\left(-3\right)^x}{81}=-27\Rightarrow\left(-3\right)^x\div\left(-3\right)^4=\left(-3\right)^3\)

\(\Rightarrow\left(-3\right)^x=\left(-3\right)^7\Rightarrow x=7\)

\(2.\sqrt{x-5}-4=5\Rightarrow\sqrt{x-5}=9\Rightarrow\sqrt{x-5}=\sqrt{81}\Rightarrow x-5=81\Rightarrow x=86\)

\(\)