Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=\(\dfrac{1}{1}-\dfrac{1}{4} +...+\dfrac{1}{94}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{100}\)
S=\(\dfrac{1}{1}-\dfrac{1}{100}\)
S=1-\(\dfrac{1}{100}\)
S=\(\dfrac{99}{100}\)
Ta có :
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..................+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.......................+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Ta có: \(\dfrac{2}{3}=\dfrac{2\times8}{3\times8}=\dfrac{16}{24}\)
\(\dfrac{7}{8}=\dfrac{7\times3}{8\times3}=\dfrac{21}{24}\)
\(\dfrac{11}{24}=\dfrac{11}{24}\)
\(\dfrac{2}{3};\dfrac{7}{8};\dfrac{11}{24}\)
lần lượt bằng: \(\dfrac{16}{24};\dfrac{21}{24};\dfrac{11}{24}\)
a)Phân số P tồn tại khi:n-2#0 và \(\left(2n-1;n-2\right)\in Z\)
b Thay \(\dfrac{3}{12}\) vào n, ta có:
\(\dfrac{2.\dfrac{3}{12}-1}{\dfrac{3}{12}-2}=\dfrac{\dfrac{-1}{2}}{\dfrac{-7}{4}}=\dfrac{2}{7}\)
b)Muốn giá trị của P\(\in\)Z thì 2n-1\(⋮\)n-2 \(\Rightarrow\)2n-4+3\(⋮\)n-2
Mà 2n-4\(⋮\)n-2\(\Rightarrow\)3\(⋮\)n-2\(\Rightarrow\)n-2\(\in\)Ư(3)=\(\left\{-3;-1;1;3\right\}\)
+ n-2=-3\(\Rightarrow\)n=-1
+ n-2=-1\(\Rightarrow\)n=1
+ n-2=1\(\Rightarrow\)n=3
+ n-2=3\(\Rightarrow\)n=5
Để P đạt được giá trị lớn nhất thì n phải là số 5
3/ Chu vi hình chữ nhật:
\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)
Diện tích hình chữ nhật:
\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)
Ta có:
\(3!-M>4\\ 6-M>6-2\\ -M>-2\\ M< 2\)
Điều phải chứng minh: \(M< 2\)
\(M=\dfrac{1}{1!}+\dfrac{1}{2!}+...+\dfrac{1}{100!}\)
Ta có:
\(\dfrac{1}{2!}=\dfrac{1}{1\cdot2}\\ \dfrac{1}{3!}=\dfrac{1}{1\cdot2\cdot3}=\dfrac{1}{2\cdot3}\\ \dfrac{1}{4!}=\dfrac{1}{1\cdot2\cdot3\cdot4}< \dfrac{1}{3\cdot4}\\ \dfrac{1}{5!}=\dfrac{1}{1\cdot2\cdot3\cdot4\cdot5}< \dfrac{1}{4\cdot5}\\ ...\\ \dfrac{1}{100!}=\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}< \dfrac{1}{99\cdot100}\)
\(\Rightarrow M< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ M< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ M< 2-\dfrac{1}{100}< 2\)
Vậy \(M< 2\)
Vì
\(M< 2\\ \Rightarrow-M>-2\\ \Rightarrow6-M>6-2\\ \Leftrightarrow3!-M>4\left(đpcm\right)\)
bn ơi tại sao - M > - 2