Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2
xét 1 điểm trong m điểm đã cho ta vẽ được (m-1) đường thẳng
mà có m điểm nên có m(m-1) đường thẳng
mà mỗi đường thẳng được tính 2 lần nên có m(m-1)/2 đường thẳng
xét 5 điểm có 5.4:2=10 đường thẳng
nếu 5 điểm này thẳng hàng thì chỉ có 1 đường thẳng
=> thừa 10-1 = 9 đường thẳng
=> có tất cả m(m-1)/2-9 đường thẳng
=> m(m-1)/2-9=201
=> m(m-1)/2 =210
=>m(m-1) = 420
mà m là số tự nhiên, mà chỉ có 20 và 21 là 2 số tự nhiên liên tiêp có h = 420
=> m=20
Bạn hỏi câu này bên Hoidap247 đúng không nè? :)
a) Ta có : \(\left(x+1\right)^{2020}\ge0\forall x\inℤ\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\le2019\)
Dấu "=" xảy ra khi \(\left(x+1\right)^{2020}=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy GTLN của P = 2019 tại \(x=-1\).
b) Ta có : \(\left|2019-x\right|\ge0\forall x\inℤ\)
\(\Rightarrow2020-\left|2019-x\right|\le2020\)
Dấu "=" xảy ra khi \(\left|2019-x\right|=0\)
\(\Rightarrow2019-x=0\)
\(\Rightarrow x=2019\)
Vậy GTLN của Q = 2020 tại \(x=2019\).
a) \(P=2019-\left(x+1\right)^{2020}\)
Ta có \(\left(x+1\right)^{2020}\ge0\forall x\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\ge2019\)
Dáu "=" xảy ra <=> \(\left(x+1\right)^{2020}=0\)
<=> x+1=0
<=> x=-1
Vậy MaxA=2019 đạt được khi x=-1
b) \(Q=2020-\left|2019-x\right|\)
Ta có \(\left|2019-x\right|\ge0\forall x\)
\(\Rightarrow2020-\left|2019-x\right|\ge2020\)
Dấu "=" xảy ra <=> |2019-x|=0
<=> 2019-x=0
<=> x=2019
Vậy MaxQ=2020 đạt được khi x=2019
1. Tự làm
2. Ta có: \(x_1+x_2+x_3+...+x_{2017}+x_{2018}+x_{2019}+x_{2020}=0\)
=> \(\left(x_1+x_2+x_3\right)+\left(x_4+x_5+x_6\right)+....+\left(x_{2017}+x_{2018}+x_{2019}\right)+x_{2020}=0\)
=> \(3+3+....+3+x_{2020}=0\) (gồm 673 chữ số 3 vì x1 + .... + x2019 gồm 2019 hạng tử gộp lại mỗi cặp 3 hạng tử)
=> \(3.673+x_{2020}=0\)
=> \(2019+x_{2020}=0\)
=> \(x_{2020}=-2019\)
3. a) 3(x - 1) - (x - 5) = -18
=> 3x - 3 - x + 5 = -18
=> 2x + 2 = -18
=> 2x = -18 - 2
=> 2x = -20
=> x = -20 : 2
=> x = 10
b ) x + (x + 1) + (x + 2) + ... + (x + 2019) = 0
=> (x + x + ... + x) + (1 + 2 + ... + 2019) = 0
=> 2020x + (2019 + 1).[(2019 - 1) : 1 + 1] : 2 = 0
=> 2020x + 2020. 2019 : 2 = 0
=> 2020x + 2039190 = 0
=> 2020x = -2039190
=> x = -2039190 : 2020
=> x = -10095
(xem lại đề)
c) Ta có: 3x + 23 = 3(x + 4) + 11
Do 3(x + 4) \(⋮\)4 => 11 \(⋮\)x + 4
=> x + 4 \(\in\)Ư(11) = {1; -1; 11; -11}
Với: +) x + 4 = 1 => x = 1 - 4 = -3
+) x + 4 = -1 => x = -1 - 4 = -5
+) x + 4 = 11 => x = 11 - 4 = 7
+) x + 4 = -11 => x = -11 - 4 = -15
4a) Ta có: 22x - y = 21x + x - y = 21 + (x - y)
Do 21x \(⋮\)7; x - y \(⋮\)7
=> 22x - y \(⋮\)7
b) 8x + 20y = 7x + 21y + x - y = 7(x + 3y) + (x - y)
Do : 7(x + 3y) \(⋮\)7; x - y \(⋮\)7
=> 8x + 20y \(⋮\)7
c) 11x + 10y = 14x + 7y - 3x + 3y = 7(2x + y) - 3(x - y)
Do: 7(2x + y) \(⋮\)7; 3(x - y) \(⋮\)7
=> 11x + 10y \(⋮\)7
a)
(x-2)(y+1)=7
=> x-2 ; y+1 thuộc Ư(7)={-1,-7,1,7}
Ta có bảng:
x-2 | -1 | -7 | 1 | 7 |
y+1 | -7 | -1 | 7 | 1 |
x | 1 | -5 | 3 | 9 |
y | -8 | -2 | 6 | 0 |
Vậy ta chỉ có 2 cặp x,y thõa mãn điều kiện x>y; là (1,-8) và (9,0)
b)
3x+8 chia hết cho x-1
<=> 3x-3+11 chia hết cho x-1
<=> 3(x-1)+11 chia hết cho x-1
<=> 3(x-1) chia hết x-1; 11 chia hết cho x-1
=> x-1 \(\in\)Ư(11)={-1,-11,1,11}
<=>x\(\in\){0,-10,2,12}
a)\(M=\frac{2019\times2020-2}{2018+2018\times2020}=\frac{2019\times2020-2}{2018+2018\times2020+2020-2020}=\frac{2019\times2020-2}{\left(2018+1\right)\times2020+2018-2020}=\frac{2019\times2020-2}{2019\times2020-2}=1\\ N=\frac{-2019\times20202020}{20192019\times2020}=\frac{-2019\times10001\times2020}{2019\times10001\times2020}=-1\)
b)\(5\left|x-1\right|=3M-2N=5\\ \left|x-1\right|=1\Rightarrow\hept{\begin{cases}x-1=1\Rightarrow x=2\\x-1=-1\Rightarrow x=0\end{cases}}\)