Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(\dfrac{\sqrt{x}-\sqrt{y}}{x-y}+\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}+1}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}.\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}+1}=\dfrac{1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}}{\sqrt{xy}+1}=\dfrac{\sqrt{xy}+1}{\sqrt{xy}+1}=1\)
b) \(B=3x-1-\sqrt{x^2-6x+9}\)
\(=3x-1-\sqrt{\left(x-3\right)^2}=3x-1-\left|x-3\right|\)
\(=\left[{}\begin{matrix}3x-1-x+3\left(x\ge3\right)\\3x-1+x-3\left(x< 3\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}2x+2\left(x\ge2\right)\\4x-4\left(x< 3\right)\end{matrix}\right.\)
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp
Áp dụng BĐT cô si cho:
!)\(\dfrac{3}{x}+\dfrac{9}{y}\)\(\ge2\sqrt{\dfrac{3}{x}.\dfrac{9}{y}}\ge2\sqrt{\dfrac{3.9}{xy}}=2\sqrt{\dfrac{27}{3}}=6\)
!!) Tương tự ta có:
\(3x+y\ge2\sqrt{3xy}\ge6\)
Vậy: K=\(\dfrac{3}{x}+\dfrac{9}{y}-\dfrac{26}{3x+y}\)\(\ge6-\dfrac{26}{6}=\dfrac{5}{3}\)
Min K=\(\dfrac{5}{3}\) Dấu "=' xảy ra khi y=1 và x=3
m=3 nên (d1): y=(k-2)x+2 và (d2): y=(6-2k)x-1
Để (d1) cắt (d2) trên trục hoành thì
\(\left\{{}\begin{matrix}6-2k< >k-2\\\dfrac{-2}{k-2}=\dfrac{1}{6-2k}=\dfrac{-1}{2k-6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3k< >-4\\2\left(2k-6\right)=k-2\end{matrix}\right.\)
=>k<>4/3 và 4k-12-k+2=0
=>k=10/3
\(a,x-9+y-2\sqrt{xy}\left(x;y>0\right)\)
\(=\left(\sqrt{x}\right)^2-2\sqrt{x}\sqrt{y}+\left(\sqrt{y}\right)^2-9\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2-9\)
\(=\left(\sqrt{x}-\sqrt{y}+3\right)\left(\sqrt{x}-\sqrt{y}-3\right)\)
\(b,\text{ đkxđ }x\ge0\)
\(x-5\sqrt{x}+6=\left(\sqrt{x}\right)^2-2\sqrt{x}-3\sqrt{x}+6\)
\(=\sqrt{x}.\left(\sqrt{x}-2\right)-3.\left(\sqrt{x}-2\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\)
\(c,đ\text{kxđ }x\ge0\)
\(x-2\sqrt{x}-3=\left(\sqrt{x}\right)^2+\sqrt{x}-3\sqrt{x}-3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+3.\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\)
\(d,\text{đkxđ }x\ge0\)
\(\sqrt{x}-x^2=\sqrt{x}-\left(\sqrt{x}\right)^4=\sqrt{x}\left(1-\left(\sqrt{x}\right)^3\right)\)
\(=\sqrt{x}.\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)
\(A=b^5\sqrt{\dfrac{a^2+6a+9}{b^8}}\)
\(A=b^5\dfrac{\sqrt{\left(a+3\right)^2}}{\sqrt{b^8}}\)
\(A=b^5\dfrac{|a+3|}{b^4}=b|a+3|\)
\(B=\dfrac{x+y+2\sqrt{xy}}{x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}}\)
\(B=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(B=\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{1}{\sqrt{x}-\sqrt{y}}\)
\(3=x+y+xy\le\sqrt{2\left(x^2+y^2\right)}+\dfrac{x^2+y^2}{2}\)
\(\Rightarrow\left(\sqrt{x^2+y^2}-\sqrt{2}\right)\left(\sqrt{x^2+y^2}+3\sqrt{2}\right)\ge0\)
\(\Rightarrow x^2+y^2\ge2\)
\(\Rightarrow-\left(x^2+y^2\right)\le-2\)
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\le\sqrt{2\left(9-x^2+9-y^2\right)}+\dfrac{\sqrt{2\left(x^2+y^2\right)}}{4}\)
\(P\le\sqrt{2\left(18-x^2-y^2\right)}+\dfrac{1}{4}.\sqrt{2\left(x^2+y^2\right)}\)
\(P\le\left(\sqrt{2}-1\right)\sqrt{18-x^2-y^2}+\sqrt[]{2}\sqrt{\dfrac{\left(18-x^2-y^2\right)}{2}}+\dfrac{1}{2}\sqrt{\dfrac{x^2+y^2}{2}}\)
\(P\le\left(\sqrt{2}-1\right).\sqrt{18-2}+\sqrt{\left(2+\dfrac{1}{4}\right)\left(\dfrac{18-x^2-y^2+x^2+y^2}{2}\right)}=\dfrac{1+8\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(x=y=1\)