Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đang vội nên mk làm tắt nha . đk x>=-5/4
\(\Leftrightarrow2\left(x+1\right)\)\(.\left[\left(x+2\right)-\sqrt{4x+5}\right]+2 \left(x+5\right)\sqrt{x+3}\left(\sqrt{x+3}-2\right)+\)\(2x^2+6x-8=0\)
\(\Leftrightarrow\frac{2\left(x+1\right)^2\left(x-1\right)}{x+2+\sqrt{4x+5}}+\frac{2\left(x+5\right)\left(x-1\right)\sqrt{x+3}}{\sqrt{x+3}+2}+2\left(x-1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\frac{2\left(x+1\right)^2}{x+2+\sqrt{4x+5}}+\frac{2\left(x+5\right)\sqrt{x+3}}{\sqrt{x+3}+2}+2\left(x+4\right)\right]=0\)
de thấy bt trong ngoặc dương suy ra x=1 là no
a: \(\text{Δ}=\left(-5\right)^2-4\cdot3\cdot8=25-96< 0\)
Do đó: Phươbg trình vô nghiệm
b: \(\text{Δ}=\left(-3\right)^2-4\cdot15\cdot5=9-300< 0\)
Do đó: Phương trình vô nghiệm
c: \(\Leftrightarrow x^2-4x+4-3=0\)
\(\Leftrightarrow\left(x-2\right)^2=3\)
hay \(x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)
d: \(\Leftrightarrow3x^2+6x+x+2=0\)
=>(x+2)(3x+1)=0
=>x=-2 hoặc x=-1/3
6.
Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)
\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)
\(\Leftrightarrow5x^2+6x+5=16x^2\)
\(\Leftrightarrow11x^2-6x-5=0\)
\(\Rightarrow x=1\)
4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)
5.
\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)
Đặt \(\sqrt{x^2+x+6}=t>0\)
\(t^2-\left(2x+1\right)t+6x-6=0\)
\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)
Lời giải:
Ta có : \(a=2+\sqrt{5}\Leftrightarrow a-2=\sqrt{5}\)
\(\Leftrightarrow a^2-4a+4=5\) (bình phương 2 vế)
\(\Leftrightarrow a^2-4a-1=0\). Khi đó ta có:
\(f(a)=a^5-4a^4-3a^3+16a^2-38a-8(a-1)\)
\(=a^3(a^2-4a-1)-2a(a^2-4a-1)+8(a^2-4a-1)-8a+8-8(a-1)\)
\(=a^3.0-2a.0+8.0-16(a-1)=-16(a-1)\)
\(=-16(2+\sqrt{5}-1)=-16(1+\sqrt{5})\)
Lời giải:
Ta có : \(a=2+\sqrt{5}\Leftrightarrow a-2=\sqrt{5}\)
\(\Leftrightarrow a^2-4a+4=5\) (bình phương 2 vế)
\(\Leftrightarrow a^2-4a-1=0\). Khi đó ta có:
\(f(a)=a^5-4a^4-3a^3+16a^2-38a-8(a-1)\)
\(=a^3(a^2-4a-1)-2a(a^2-4a-1)+8(a^2-4a-1)-8a+8-8(a-1)\)
\(=a^3.0-2a.0+8.0-16(a-1)=-16(a-1)\)
\(=-16(2+\sqrt{5}-1)=-16(1+\sqrt{5})\)