\(\frac{42-x}{x-15}\)tìm x nguyên để F có giá trị nhỏ nhất

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2020

                                                                 Bài giải

a, Ta có : \(A=\left|x-1\right|+\left|x-2\right|\)

* Với x < 2 thì :

\(A=-\left(x-1\right)-\left(x-2\right)\)

\(A=-x+1-x+2\)

\(A=-2x+3\)

* Với x > 2 thì :

\(A=x-1+x-2\)

\(A=2x-3\)

b, Ta có :

\(B=\frac{42-y}{y-15}=\frac{15-y+27}{y-15}=\frac{15-y}{y-15}+\frac{27}{y-15}=-1+\frac{27}{y-15}\)

B đạt GT nguyên NN khi \(\frac{27}{y-15}\) đạt GT nguyên NN 

\(\Rightarrow\text{ }y\ne15\)

Ta xét 2 trường hợp :

* Với y < 15 => \(\frac{27}{y-15}< 0\text{ }\Rightarrow\text{ }B< 0\)

* Với y > 15 => \(\frac{27}{y-15}>0\text{ }\Rightarrow\text{ }B>0\)

Mà ta đang tìm GT nguyên NN của \(\frac{27}{y-15}\) \(\Rightarrow\) y - 15 đạt GTLN và y < 15 , x nguyên => y = 14

=> GTNN của \(\frac{27}{y-15}=\frac{27}{-1}=-27\)

\(\Rightarrow\)GT nguyên NN của B = - 1 + ( - 27 ) = - 28 khi x = - 14

30 tháng 6 2017

a. Để \(\frac{x+2}{x-1}\) có nghĩa thì \(x-1\ne0\Leftrightarrow x\ne1\)

b. Thay số vào rồi tính là ra nhé bạn.

c. \(f\left(x\right)=\frac{1}{4}\)

\(\frac{x+2}{x-1}=\frac{1}{4}\)

4(x + 2) = x - 1

4x + 8 = x - 1

4x - x = -1 - 8

3x = -9

x = -3

d. \(f\left(x\right)\in Z\)

\(\Rightarrow\frac{x+2}{x-1}\in Z\)

\(\Rightarrow\frac{x-1+3}{x-1}\in Z\)

\(\Rightarrow1+\frac{3}{x-1}\in Z\)

\(\Rightarrow\frac{3}{x-1}\in Z\)

Để \(\frac{3}{x-1}\in Z\) thì \(3⋮x-1\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\text{±}1;\text{±}3\right\}\)

Ta có bảng sau:

x - 1-1-313
x0-224

Vậy để f(x) có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)

e. f(x) > 0

\(\Leftrightarrow\frac{x+2}{x-1}>0\)

\(\Rightarrow1+\frac{3}{x-1}>0\)

\(\Rightarrow\frac{3}{x-1}>-1\)

\(\Rightarrow x-1>-3\)

\(\Rightarrow x>-2\)

14 tháng 8 2020

a) \(A=\left|x+\frac{2}{3}\right|\ge0\)

Min A = 0 \(\Leftrightarrow x=\frac{-2}{3}\)

b) \(B=\left|x\right|+\frac{2}{3}\ge\frac{2}{3}\)

Min \(B=\frac{2}{3}\)\(\Leftrightarrow x=0\)

c) \(C=\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\)

Min C = 3 \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

d) \(F=\left|x-5\right|+\left|x+4\right|\ge\left|5-x+x+4\right|=\left|9\right|=9\)

Min F = 9 

\(\Leftrightarrow x\ge5\)

14 tháng 8 2020

Ta có : \(A=\left|x+\frac{2}{3}\right|\ge0\forall x\)

Dấu "=" xảy ra <=> x + 2/3 = 0 => x = -2/3

Vậy GTNN của A là 0 khi x = -2/3

b) Vì \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+\frac{1}{3}\ge\frac{1}{3}\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy GTNN của B là 1/3 khi x = 0

c) \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\forall x\\\left|y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

Vậy GTNN của C là 3 <=> x = 1/2 ; y = 0

d) Ta có F = |x - 5| + |x + 4| = |5 - x| + |x + 4| \(\ge\)|5 - x + x + 4| = |9| = 9

Dấu "=" xảy ra <=>\(\left(5-x\right)\left(x+4\right)\ge0\)

TH1 : \(\hept{\begin{cases}5-x\le0\\x+4\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge5\\x\le-4\end{cases}}\left(\text{loại}\right)\)

TH2 : \(\hept{\begin{cases}5-x\ge0\\x+4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le5\\x\ge-4\end{cases}}\Rightarrow-4\le x\le5\left(tm\right)\)

Vậy GTNN của F là 9 khi \(-4\le x\le5\)

6 tháng 2 2017

Ta đặt:

\(A=\frac{42-x}{x-15}=1+\frac{27}{x-15}\)

Để cho A nguyên ti (x-15) phải là U nguyên của 27

Để A có GTNN thì (x-15) phải là số âm lớn nhất

Từ 2 cái này ta suy ra x-15 phải là ước nguyên âm lớn nhất của 27

\(\Rightarrow x-15=1\)

\(\Rightarrow x=14\)

\(\Rightarrow A=1+\frac{27}{-1}=-28\)

7 tháng 3 2021

a, Để A nhận giá trị lớn nhất thì 19 - x nhận giá trị nguyên dương nhỏ nhất : \(19-x=1\Leftrightarrow x=18\)

b, Để B nhận giá trị nhỏ nhất thì x - 2019 nhận giá trị nguyên âm lớn nhất : \(x-2019=-1\Leftrightarrow x=2018\)

30 tháng 4 2016

\(B=\frac{42-y}{y-15}=\frac{15+27-y}{y-15}=\frac{27-\left(y-15\right)}{y-15}=\frac{27}{y-15}-1\)

Đặt \(D=\frac{27}{y-15}\)

Ta có: \(B_{min}\Leftrightarrow D_{min}\)

ĐK: \(y\ne15\),xét 2 TH:

TH1:Nếu y<15 thì y-15<0,mà 27>0=>D<0

TH2:Nếu y>15 thì y-15>0;mà 27>0=>D>0

Như vậy,muốn \(D_{min}\) ta phải chọn y sao cho D<0,tức là chọn y<15

Khi đó \(D_{min}\) khi số đối của \(D_{max}\Leftrightarrow\left(\frac{27}{15-y}\right)_{max}\Leftrightarrow\left(15-y\right)_{min}\) (do 27 là hằng số dương)

Có 15-y>0,mà \(x\in Z\) nên \(\left(15-y\right)_{min}\Leftrightarrow15-y=1\Leftrightarrow y=14\) (thỏa mãn ĐK)

Vậy \(B_{min}=\frac{42-14}{14-14}=-28\) tại y=14