\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)

_Minh ngụy_

\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )

\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)

_Minh ngụy_

NV
27 tháng 9 2019

ĐKXĐ: \(x>0;x\ne1\)

\(E=\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right):\left(\frac{x-1}{\sqrt{x}}\right)\)

\(=\left(\frac{4\sqrt{x}}{x-1}+4\sqrt{x}\right):\left(\frac{x-1}{\sqrt{x}}\right)\)

\(=\frac{4x\sqrt{x}}{\left(x-1\right)}.\frac{\sqrt{x}}{\left(x-1\right)}=\frac{4x^2}{\left(x-1\right)^2}\)

Đề có nhầm ko bạn?

\(E=2\Rightarrow\left(\frac{2x}{x-1}\right)^2=2\Rightarrow\left[{}\begin{matrix}\frac{2x}{x-1}=\sqrt{2}\\\frac{2x}{x-1}=-\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\sqrt{2}x-\sqrt{2}\\2x=-\sqrt{2}x+\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-\sqrt{2}}{2-\sqrt{2}}< 0\left(l\right)\\x=\frac{\sqrt{2}}{2+\sqrt{2}}=\sqrt{2}-1\end{matrix}\right.\)

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
2 tháng 7 2019

\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)

\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)

\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)

\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)

2 tháng 7 2019

\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé 

\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

25 tháng 7 2019
https://i.imgur.com/zP7lFrE.jpg
25 tháng 7 2019

Cảm ơn bạn nhiều !!!

13 tháng 6 2016

Cô hướng dẫn nhé :) 

a. ĐK: \(x>0;x\ne1\) 

Ta có \(E=\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)+4\sqrt{x}\left(x-1\right)}{x-1}:\frac{x-1}{\sqrt{x}}\)

\(\Leftrightarrow E=\frac{4x\sqrt{x}}{x-1}.\frac{\sqrt{x}}{x-1}=\frac{4x^2}{\left(x-1\right)^2}\)

b. Để \(E=2\Rightarrow\frac{4x^2}{\left(x-1\right)^2}=2\Leftrightarrow2x^2+4x-2=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}-1\\x=-\sqrt{2}-1\left(L\right)\end{cases}}\)

c. \(x=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\sqrt{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=2\)

Vậy E = 16.

13 tháng 6 2016

a)Rút gọn E ta đc:

\(\frac{4x^2+\sqrt{x}\left(2x+2\right)-4x}{x^2-2x+1}\)

b)Với E=2\(\Leftrightarrow\)\(\frac{4x^2+\sqrt{x}\left(2x+2\right)-4x}{x^2-2x+1}=2\)

\(\Leftrightarrow\frac{4x^2}{x^2-2x+1}+\frac{2\sqrt{x^3}}{x^2-2x+1}-\frac{4x}{x^2-2x+1}+\frac{2\sqrt{x}}{x^2-2x+1}-2=0\)

\(\Leftrightarrow\frac{2\left(x^2\sqrt{x^3}+\sqrt{x}-1\right)}{x^2-2x+1}=0\)

\(\Leftrightarrow x^2+\sqrt{x^3}+\sqrt{x}-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{-\sqrt{x^3}-\sqrt{x}+1}=0\left(tm\right)\\\sqrt{-\sqrt{x^3}-\sqrt{x}+1}+x=0\left(loai\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-\sqrt{5}-3=0\left(loai\right)\\2x+\sqrt{5}-3=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=-\frac{\sqrt{5}-3}{2}\left(tm\right)\)