Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3C=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^2}+...+\frac{99}{3^{89}}-\frac{100}{3^{99}}\)
\(\Rightarrow4C=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow4C< 1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\left(1\right)\)
Đặt: \(B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
\(\Rightarrow3B=2+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
\(4B=B+3B=3-\frac{1}{3^{99}}< 3\)
\(\Rightarrow B< \frac{3}{4}\left(2\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow4C< B< \frac{3}{4}\)
\(\Rightarrow C< \frac{3}{16}\left(đpcm\right)\)
(Đánh nhanh quá sai chỗ nào thông cảm nha :))
\(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3C=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow C+3C=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow4C< 1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}=D\)
Xét \(D=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
\(\frac{D}{3}=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(\Rightarrow D+\frac{D}{3}=1-\frac{1}{3^{100}}< 1\Rightarrow\frac{4D}{3}< 1\Rightarrow D< \frac{3}{4}\)
\(\Rightarrow4C< D< \frac{3}{4}\Rightarrow C< \frac{3}{16}\)
Câu hỏi của Ngô Văn Nam - Toán lớp 6 - Học toán với OnlineMath
\(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
=> \(3C=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
=> \(C+3C=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> \(4C=1-\frac{100}{3^{100}}-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
Đặt: \(B=-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
=> \(3B=-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
=> \(B+3B=-1-\frac{1}{3^{99}}\)
=> \(4B=-1-\frac{1}{3^{99}}\)
=> \(B=-\frac{1}{4}-\frac{1}{4}.\frac{1}{3^{99}}\)
=> \(4C=1-\frac{100}{3^{100}}+B=1-\frac{100}{3^{100}}-\frac{1}{4}-\frac{1}{4}.\frac{1}{3^{99}}\)
=> \(4C=\frac{3}{4}-\frac{100}{3^{100}}-\frac{1}{4.3^{99}}< \frac{3}{4}\)
=> \(C< \frac{3}{16}\)
1)\(3C=1+\frac{2}{3}+...+\frac{100}{3^{99}}\)
\(3C-C=\left(1+\frac{2}{3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{100}{3^{100}}\right)\)
\(2C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt \(M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3M=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(3M-M=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)
\(2M=3-\frac{1}{3^{99}}\)
\(M=\frac{3}{2}-\frac{1}{3^{99}\cdot2}\)
\(\Rightarrow2C=M-\frac{100}{3^{100}}\)
\(\Rightarrow2C=\frac{3}{2}-\frac{1}{3^{99}\cdot2}-\frac{100}{3^{100}}\)
\(\Rightarrow2C< \frac{3}{2}\)
\(\Rightarrow C< \frac{3}{4}\)
#)Giải :
Bài 1 :
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\Leftrightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(\Leftrightarrow3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(\Leftrightarrow2C=1-\frac{1}{3^{100}}\Leftrightarrow C=\frac{1-\frac{1}{3^{100}}}{2}< \frac{1}{2}\Rightarrow C< \frac{1}{2}\left(đpcm\right)\)
Bài 2 :
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
\(=\left(1-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{16}\right)+...+\left(\frac{1}{81}-\frac{1}{100}\right)=1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)
\(C=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)
\(\Rightarrow3C=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)
Trừ dưới cho trên:
\(2C=1+\frac{2}{3}-\frac{1}{3}+\frac{3}{3^2}-\frac{2}{3^2}+\frac{4}{3^3}-\frac{3}{3^3}+...+\frac{100}{3^{99}}-\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(2C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}=B\Rightarrow2C=B-\frac{100}{3^{100}}\)
\(B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3B-3+\frac{1}{3^{99}}=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}=B\)
\(\Rightarrow2B=3-\frac{1}{3^{99}}\Rightarrow B=\frac{3}{2}-\frac{1}{2.3^{99}}< \frac{3}{2}\)
\(\Rightarrow2C=B-\frac{100}{3^{100}}< B< \frac{3}{2}\Rightarrow C< \frac{3}{4}\)