Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
\(P=A-B=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{x^2-9}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-9-x^2+9}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x\left(2-x\right)}{\left(x-3\right)\left(x-2\right)}\\ =-\dfrac{x\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =-\dfrac{x}{x-3}\)
c)
Để \(P\le1\) thì:
\(-\dfrac{x}{x-3}\le1\)
\(\Leftrightarrow\dfrac{x}{x-3}\ge1\\ \Leftrightarrow x-3-x\ge1\\ \Leftrightarrow-3\ge1\left(vô.lý\right)\)
Vậy không tồn tại giá trị x để \(P\le1\)
`HaNa♬D`
Làm lại nha cái này đúng, kia sai nha=)
b)
Với \(\left\{{}\begin{matrix}x\ne3\\x\ne2\end{matrix}\right.\)
\(P=A-B=(\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)})+\dfrac{2x-1}{x-3}\\ =\left(\dfrac{2x-9-x^2-9}{\left(x-3\right)\left(x-2\right)}\right)+\dfrac{\left(2x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2}{\left(x-3\right)\left(x-2\right)}+\dfrac{2x^2-4x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{2x-x^2+2x^2-4x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x^2-3x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x^2-2x-x+2}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{x\left(x-2\right)-\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\\ =\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\dfrac{x-1}{x-3}\)
c)
Để P\(\ge1\) thì:
\(\dfrac{x-1}{x-3}\ge1\\ \Leftrightarrow x-3-x+1-1\ge0\\ \Leftrightarrow-3\ge0\left(vô.lý\right)\)
Vậy không tồn tại giá trị x để \(P\ge1\)
`HaNa☘D`
a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)
\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)
\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)
b: 2x^2+7x+3=0
=>(2x+3)(x+2)=0
=>x=-3/2(loại) hoặc x=-2(nhận)
Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)
d: |B|<1
=>B>-1 và B<1
=>B+1>0 và B-1<0
=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)
a) ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
Ta có: \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x^2+10x}\)
\(=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}-\dfrac{5x-50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50-5x+50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+5x-x-5}{2\left(x+5\right)}\)
\(=\dfrac{x\left(x+5\right)-\left(x+5\right)}{2\left(x+5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}\)
\(=\dfrac{x-1}{2}\)
b) Để B=0 thì \(\dfrac{x-1}{2}=0\)
\(\Leftrightarrow x-1=0\)
hay x=1(nhận)
Vậy: Để B=0 thì x=1
Để \(B=\dfrac{1}{4}\) thì \(\dfrac{x-1}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow4\left(x-1\right)=2\)
\(\Leftrightarrow4x-4=2\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)(nhận)
Vậy: Để \(B=\dfrac{1}{4}\) thì \(x=\dfrac{3}{2}\)
c) Thay x=3 vào biểu thức \(B=\dfrac{x-1}{2}\), ta được:
\(B=\dfrac{3-1}{2}=\dfrac{2}{2}=1\)
Vậy: Khi x=3 thì B=1
d) Để B<0 thì \(\dfrac{x-1}{2}< 0\)
\(\Leftrightarrow x-1< 0\)
\(\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ, ta được:
\(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)
Vậy: Để B<0 thì \(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)
Để B>0 thì \(\dfrac{x-1}{2}>0\)
\(\Leftrightarrow x-1>0\)
hay x>1
Kết hợp ĐKXĐ, ta được: x>1
Vậy: Để B>0 thì x>1
a)B = \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\left(ĐK:x\ne\pm3\right)\)
= \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{7x+3}{x^2-9}\)
= \(\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-7x-3}{\left(x+3\right)\left(x-3\right)}\)
= \(\dfrac{3x^2-9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x+3}\)
b) \(\left|2x+1\right|=7< =>\left[{}\begin{matrix}2x+1=7< =>x=3\left(L\right)\\2x+1=-7< =>x=-4\left(C\right)\end{matrix}\right.\)
Thay x = -4 vào B, ta có:
B = \(\dfrac{-4.3}{-4+3}=12\)
c) Để B = \(\dfrac{-3}{5}\)
<=> \(\dfrac{3x}{x+3}=\dfrac{-3}{5}< =>\dfrac{3x}{x+3}+\dfrac{3}{5}=0\)
<=> \(\dfrac{15x+3x+9}{5\left(x+3\right)}=0< =>x=\dfrac{-1}{2}\left(TM\right)\)
d) Để B nguyên <=> \(\dfrac{3x}{x+3}\) nguyên
<=> \(3-\dfrac{9}{x+3}\) nguyên <=> \(9⋮x+3\)
x+3 | -9 | -3 | -1 | 1 | 3 | 9 |
x | -12(C) | -6(C) | -4(C) | -2(C) | 0(C) | 6(C) |