K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2023

\(B=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\) 

a) ĐK: \(x\ne1,x\ge0\)

\(B=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)

\(B=\left[\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(B=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(B=\left[\dfrac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(B=\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2}{2}\)

\(B=-\sqrt{x}\left(\sqrt{x}-1\right)\) 

a: ĐKXĐ: x>=0; x<>1

\(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)

\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\dfrac{1}{\sqrt{x}+2}\)

c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)

d: căn x+2>=2

=>A<=1/2

Dấu = xảy ra khi x=0

21 tháng 8 2023

a/ Để rút gọn biểu thức A, chúng ta có thể thực hiện các bước sau:

Tích hợp tử số và mẫu số trong mỗi phần tử của biểu thức.Sử dụng công thức (a + b)(a - b) = a^2 - b^2 để loại bỏ căn bậc hai khỏi mẫu số.

Áp dụng các bước trên, ta có: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x))

Bây giờ, chúng ta sẽ rút gọn biểu thức này: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x)) = [(2√x + 2) + (2√x - 2) + (√x(2√x - 2)(2√x + 2))]/[(2√x - 2)(2√x + 2)(1 - x)] = [4√x + √x(4x - 4)]/[(4x - 4)(1 - x)] = [4√x + 4√x(x - 1)]/[-4(x - 1)(x - 1)] = [4√x(1 + x - 1)]/[-4(x - 1)(x - 1)] = -√x/(x - 1)

b/ Để tính giá trị của A với x = 4/9, ta thay x = 4/9 vào biểu thức đã rút gọn: A = -√(4/9)/(4/9 - 1) = -√(4/9)/(-5/9) = -√(4/9) * (-9/5) = -2/3 * (-9/5) = 6/5

Vậy, khi x = 4/9, giá trị của A là 6/5.

c/ Để tính giá trị của x sao cho giá trị tuyệt đối của A bằng 1/3, ta đặt: |A| = 1/3 |-√x/(x - 1)| = 1/3

Vì A là một số âm, ta có: -√x/(x - 1) = -1/3

Giải phương trình trên, ta có: √x = (x - 1)/3 x = ((x - 1)/3)^2 x = (x - 1)^2/9 9x = (x - 1)^2 9x = x^2 - 2x + 1 x^2 - 11x + 1 = 0

Sử dụng công thức giải phương trình bậc hai, ta có: x = (11 ± √(11^2 - 4 * 1 * 1))/2 x = (11 ± √(121 - 4))/2 x = (11 ± √117)/2

Vậy, giá trị của x để giá trị tuyệt đối của A bằng 1/3 là (11 + √117)/2 hoặc (11 - √117)/2.

a: ĐKXĐ: x>=0; x<>1

\(A=\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\)

\(=\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}-1\right)}{x-1}\)

\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{x-1}=\dfrac{x+\sqrt{x}}{x-1}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

b: Khi x=9/4 thì A=3/2:1/2=3/2*2=3

Phần II:Tự luận (7đ)Câu Phần II:Tự luận (7đ)Câu 1:  a) Tính:                     b) Cho biểu thức:  *) Tìm điều kiện xác định và rút gọn biểu thức A. *) Tìm các giá trị của x để biểu thức A có giá trị âm.Câu 2: Cho hai hàm số bậc nhất y = (m – 1)x + 2 với m ≠ 1     (d1)                                                     y = (3 – m)x – 2 với m ≠ 3     (d2)a/ Tìm giá trị của m để đồ thị của hai hàm số đã cho cắt  b/ Vẽ...
Đọc tiếp

Phần II:Tự luận (7đ)

Câu Phần II:Tự luận (7đ)

Câu 1:  a) Tính:                     

b) Cho biểu thức:  

*) Tìm điều kiện xác định và rút gọn biểu thức A. 

*) Tìm các giá trị của x để biểu thức A có giá trị âm.

Câu 2: Cho hai hàm số bậc nhất y = (m – 1)x + 2 với m ≠ 1     (d1)

                                                     y = (3 – m)x – 2 với m ≠ 3     (d2)

a/ Tìm giá trị của m để đồ thị của hai hàm số đã cho cắt  

b/ Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ khi m = 0.

c/ Gọi I là giao điểm của hai đồ thị nói trên. Tìm tọa độ của điểm I (bằng phép toán).

d/ Tính góc hợp bởi đường thẳng (d2) với trục Ox khi m = 0.

Câu 3:Từ điểm M ở ngoài (O; R) vẽ hai tiếp tuyến MA, MB với (O) (A, B là 2 

tiếp điểm), vẽ dây AC// OM.

a) Chứng minh OM   AB tại H và suy ra OH.OM = R2.

b) MC cắt (O) tại E. Chứng minh 3 điểm B, O, C thẳng hàng và MH.MO = ME.MC.

c) Vẽ AK BC tại K, gọi N là giao điểm của MC và AK. Chứng minh NA = NK

1:  a) Tính:                   

b) Cho biểu thức:

          *) Tìm điều kiện xác định và rút gọn biểu thức A.

          *) Tìm các giá trị của x để biểu thức A có giá trị âm.

Câu 2: Cho hai hàm số bậc nhất y = (m – 1)x + 2 với m ≠ 1     (d1)

                                                     y = (3 – m)x – 2 với m ≠ 3     (d2)

a/ Tìm giá trị của m để đồ thị của hai hàm số đã cho cắt 

b/ Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ khi m = 0.

c/ Gọi I là giao điểm của hai đồ thị nói trên. Tìm tọa độ của điểm I (bằng phép toán).

d/ Tính góc hợp bởi đường thẳng (d2) với trục Ox khi m = 0.

Câu 3:Từ điểm M ở ngoài (O; R) vẽ hai tiếp tuyến MA, MB với (O) (A, B là 2

tiếp điểm), vẽ dây AC// OM.

a)     Chứng minh OM  AB tại H và suy ra OH.OM = R2.

b)    MC cắt (O) tại E. Chứng minh 3 điểm B, O, C thẳng hàng và MH.MO = ME.MC.

c)     Vẽ AKBC tại K, gọi N là giao điểm của MC và AK. Chứng minh NA = NK

mọi người giúp mik với 

1

Câu 2:

a: Để (d1) cắt (d2) thì \(m-1\ne3-m\)

=>\(2m\ne4\)

=>\(m\ne2\)

b: Thay m=0 vào (d1), ta được:

\(y=\left(0-1\right)x+2=-x+2\)

Thay m=0 vào (d2), ta được:

\(y=\left(3-0\right)x-2=3x-2\)

Vẽ đồ thị:

loading...

c: Phương trình hoành độ giao điểm là:

3x-2=-x+2

=>3x+x=2+2

=>4x=4

=>x=1

Thay x=1 vào y=3x-2, ta được:

y=3*1-2=3-2=1

d:

Khi m=0 thì (d2): y=3x-2

Gọi \(\alpha\) là góc tạo bởi (d2): y=3x-2 với trục Ox

y=3x-2 nên a=3

\(tan\alpha=a=3\)

=>\(\alpha\simeq72^0\)

Câu 3:

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

=>OM\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2\)

=>\(OH\cdot OM=R^2\)

b: Ta có: AC//OM

OM\(\perp\)AB

Do đó: AB\(\perp\)AC

=>ΔABC vuông tại A

=>ΔABC nội tiếp đường tròn đường kính BC

mà ΔABC nội tiếp (O)

nên O là trung điểm của BC

=>B,O,C thẳng hàng

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)EC tại E

=>BE\(\perp\)CM tại E

Xét ΔMBC vuông tại B có BE là đường cao

nên \(ME\cdot MC=MB^2\)(3)

Xét ΔMBO vuông tại B có BH là đường cao

nên \(MH\cdot MO=MB^2\left(4\right)\)

Từ (3) và (4) suy ra \(ME\cdot MC=MH\cdot MO\)

1: ĐKXĐ: \(a\ge0\)

19 tháng 2 2021

Tham khảo thanh này để soạn đề chính xác hơn nha :vvv

a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)

\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)

\(=\dfrac{-1}{\sqrt{x}-2}\)(1)

b) Ta có: \(x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)

Thay x=0 vào biểu thức (1), ta được:

\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)

Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)

DT
15 tháng 10 2023

\(R=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{3x-5\sqrt{x}}{4-x}\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}-1\right)\left(ĐK:x\ge0,x\ne4\right)\\ =\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3x-5\sqrt{x}}{\sqrt{x}^2-2^2}\right):\dfrac{2\sqrt{x}-1-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+3x-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-2}{2\sqrt{x}-1-\sqrt{x}+2}\\ =\dfrac{3x-6\sqrt{x}+x+2\sqrt{x}+3x-5\sqrt{x}}{\sqrt{x}+2}.\dfrac{1}{\sqrt{x}+1}\)

\(=\dfrac{7x-9\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)

Bạn xem lại đề nhé, rút gọn thường ra kết quả rất đẹp chứ không dài như kết quả này đâu ạ.

15 tháng 10 2023

Giúp với ạ mình cảm ơn ai làm được mình cho 100sao