K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 6 2019

\(x=\frac{1}{2}\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}=\frac{1}{2}.\left(\sqrt{2}-1\right)\)

\(\Rightarrow2x=\sqrt{2}-1\Rightarrow2x+1=\sqrt{2}\)

\(\Rightarrow4x^2+4x+1=2\Rightarrow4x^2+4x-1=0\)

\(B=\left[x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1-1\right]^{2018}+2018\)

\(=\left(-1\right)^{2018}+2018=2019\)

31 tháng 3 2020

a, Ta có : \(\frac{x+1}{2}+\frac{x-2}{4}=1-\frac{2\left(x-1\right)}{3}\)

=> \(\frac{6\left(x+1\right)}{12}+\frac{3\left(x-2\right)}{12}=\frac{12}{12}-\frac{8\left(x-1\right)}{12}\)

=> \(6\left(x+1\right)+3\left(x-2\right)=12-8\left(x-1\right)\)

=> \(6x+6+3x-6=12-8x+8\)

=> \(17x=20\)

=> \(x=\frac{20}{17}\)

b, Ta có : \(\frac{5x-1}{6}+x=\frac{6-x}{4}\)

=> \(\frac{5x-1+6x}{6}=\frac{6-x}{4}\)

=> \(4\left(11x-1\right)=6\left(6-x\right)\)

=> \(44x-4-36+6x=0\)

=> \(\)\(50x=40\)

=> \(x=\frac{4}{5}\)

c, Ta có : \(\frac{5\left(1-2x\right)}{3}+\frac{x}{2}=\frac{3\left(x-5\right)}{4}-2\)

=> \(\frac{20\left(1-2x\right)}{12}+\frac{6x}{12}=\frac{9\left(x-5\right)}{12}-\frac{24}{12}\)

=> \(20\left(1-2x\right)+6x=9\left(x-5\right)-24\)

=> \(20-40x+6x-9x+45+24=0\)

=> \(43x=89\)

=> \(x=\frac{89}{43}\)

6 tháng 3 2020

Bài 1 :

\(\frac{x^3-9x}{15-5x}=\frac{-x^2-3x}{5}\left(ĐKXĐ:x\ne3\right)\)

\(\Leftrightarrow5\left(x^3-9x\right)=-\left(x^2+3x\right)\left(15-5x\right)\)

\(\Leftrightarrow5x^3-45x=5x^3-45\) ( luôn đúng )

Do đó : \(\frac{x^3-9x}{15-5x}=\frac{-x^2-3x}{5}\left(x\ne3\right)\)

P/s : Bài này thì xét tích chéo của hai số thôi nhé @

\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow2\left(a^2+b^2\right)>\left(a+b\right)^2\)

\(a^2+b^2=a+b\Rightarrow2\left(a+b\right)\ge\left(a+b\right)^2\Rightarrow a+b\le2\)

Lại có : \(S=\frac{a}{a+1}+\frac{b}{b+1}=1-\frac{1}{a+1}+1-\frac{1}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

Áp dụng bất đẳng thức Svac - sơ ta có :

\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}=\frac{4}{a+b+2}\ge1\)

Vì vậy S = \(2-\left(\frac{a}{a+1}+\frac{b}{b+1}\right)\le2-1=1\)

=> Smax =1

Dấu = xảy ra khi a = b = 1

NV
22 tháng 6 2019

\(\Leftrightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=...\\y=...\\z=...\end{matrix}\right.\)

31 tháng 7 2016

\(4x^2-4x=\left(2x\right)^2-2.2x+1-1=\left(2x-1\right)^2-1\)

Vì \(\left(2x-1\right)^2\ge0\)

nên \(\left(2x-1\right)^2-1\ge-1\)

Vậy \(Min_{4x^2-4x}=-1\)khi \(2x-1=0\Rightarrow x=\frac{1}{2}\)

17 tháng 6 2017

chiều mai bn nộp thì làm luôn đi còn hỏi đáp nữa !!!!!!

17 tháng 6 2017

mình làm bài 2 trước nha:

a) y.(a-b)+a.(y-b)=a.y-b.y+a.y-b.y

                        =(a.y+a.y)-(b.y+b.y)

                         =2.a.y-2.b.y

                        =2.y.(a-b)

b)x2.(x+y)-y.(x2-y2)=x3+x2.y-x2y+y3=x3+y3