Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ: x\(\ne\) 1;-1;2
b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)
=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{x-2}{x-1}\)
c, Khi x= -1
→A= \(\frac{-1-2}{-1-1}\)
= -3
Vậy khi x= -1 thì A= -3
Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^
a,ĐKXĐ:x#1; x#-1; x#2
b,Ta có:
A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)
=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{x-2}{x+1}\)
c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả
d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên
\(\Leftrightarrow x-2⋮x+1\)
\(\Leftrightarrow x+1-3⋮x+1\)
Mà \(x+1⋮x+1\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)
Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên
Ta có : \(A=\frac{x^2-4}{x^2+4x+4}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)^2}=\frac{x-2}{x+2}\)
Thay x = 3 vào biểu thức trên ta được : \(\frac{3-2}{3+2}=\frac{1}{5}\)
Vậy biểu thức nhận giá trị là 1/5 khi x = 3
Trả lời:
A=\(\frac{x^2-4}{x^2+4x+4}\)
A=\(\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2}\)
A= \(\frac{x-2}{x+2}\)
Vời x=3,
A=\(\frac{3-2}{3+2}\)
A=\(\frac{1}{5}\)
Bài 2 :
a) Phân thức A xác định \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)
b) \(A=\left(\frac{1}{x-2}-\frac{1}{x+2}\right)\cdot\frac{x^2-4x+4}{4}\)
\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\left(\frac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\frac{4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\frac{4\cdot\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)\cdot4}\)
\(A=\frac{x-2}{x+2}\)
c) Thay x = 4 ta có :
\(A=\frac{4-2}{4+2}=\frac{2}{6}=\frac{1}{3}\)
Vậy.........
\(4x^2y^3.\frac{2}{4}x^3y=4x^2y^3.\frac{1}{2}x^3y=2x^5y^4\)
\(\left(5x-2\right)\left(25x^2+10x+4\right)\)
\(=\left(5x-2\right)\left[\left(5x\right)^2+5x.2+2^2\right]\)
\(=\left(5x\right)^3-2^3\)
\(=125x^3-8\)
a) Ta có M = (x + 3)2 - (x - 1)(x + 4) + 5
= x2 + 6x + 9 -(x2 + 3x - 4) + 5
= x2 + 6x + 9 - x2 - 3x + 4 + 5
= 3x + 18 (1)
b) Thay x = 2 vào (1)
=> M = 3.2 + 18 = 24
c) Ta có M = 15x2
=> 15x2 = 3x + 18
=> 15x2 - 3x - 18 = 0
=> 15x2 + 15x - 18x - 18 = 0
=> 15x(x + 1) - 18(x + 1) = 0
=> (15x - 18)(x + 1) = 0
=> 3(5x - 6)(x + 1) = 0
=> (5x - 6)(x + 1) = 0
=> \(\orbr{\begin{cases}5x-6=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1,2\\x=-1\end{cases}}\)
Vậy \(x\in\left\{1,2;-1\right\}\)là giá trị cần tìm
a, \(M=\left(x+3\right)^2-\left(x-1\right)\cdot\left(x+4\right)+5\)\(=x^2+6x+9-\left(x^2-x+4x-4\right)+5\)\(=3x+18\)
b, Thay x=2 vào M có \(M=3\cdot2+18=24\)
c, \(M=15x^2\Leftrightarrow15x^2=3x+18\Leftrightarrow15x^2-3x-18=0\Leftrightarrow3\cdot\left(x+1\right)\cdot\left(5x-6\right)=0\) \(\Leftrightarrow\hept{\begin{cases}x=-1\\x=\frac{6}{5}\end{cases}}\)
Vậy ....
a)Trong biểu thức A có (3-x)^2=(x-3)^2 nên ta có:
\(A=\left(2x+1\right)^2+2\left(2x+1\right)\left(x-3\right)+\left(x-3\right)^2=\left(2x+1+x-3\right)^2=\left(3x-2\right)^2\)
\(B=\frac{1-4x}{\left(4x-1\right)\left(3x-2\right)}=-\frac{4x-1}{\left(4x-1\right)\left(3x-2\right)}=\frac{-1}{3x-2}\)
b)Thay x=1/3 vào biểu thức A ta có:
\(A=\left(3.\frac{1}{3}-2\right)^2=\left(1-2\right)^2=\left(-1\right)^2=1\)
c)\(A.B=\left(3x-2\right)^2.\frac{-1}{3x-2}=-\frac{\left(3x-2\right)^2}{3x-2}=-\left(3x-2\right)=2-3x\)
a) ĐKXĐ : \(x\ne0;x\ne\pm2;x\ne3\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
Đặt \(B=\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\)
\(B=\frac{\left(x+2\right)\left(x+2\right)}{-\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}-\frac{\left(2-x\right)\left(x-2\right)}{\left(2+x\right)\left(x-2\right)}\)
\(B=\frac{-\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}-\frac{-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-\left(x+2\right)^2-4x^2--\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x^2-8x}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x}{x-2}\)
\(\Rightarrow A=\frac{-4x}{x-2}:\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(\Leftrightarrow A=\frac{-4x\cdot x^2\cdot\left(2-x\right)}{\left(x-2\right)\cdot x\cdot\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{4x^2\cdot x\cdot\left(x-2\right)}{\left(x-3\right)\cdot x\cdot\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{4x^2}{x-3}\)
b) \(\left|x-7\right|=4\)
\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => x = 11
\(\Leftrightarrow A=\frac{4\cdot11^2}{11-3}=\frac{121}{2}\)
c) \(A=\frac{4x^2}{x-3}\)
Để A dương thì hoặc cả tử và mẫu âm hoặc cả tử và mẫu dương
Dễ thấy \(4x^2\ge0\forall x\)
=> Để A dương thì x - 3 dương
hay x - 3 > 0
<=> x > 3
Vậy x > 3 thì A > 0
a) \(A=\frac{x^2+4x+4}{x+2}\left(ĐKXĐ:x\ne-2\right)\)
\(A=\frac{\left(x+2\right)^2}{x+2}=x+2\) ( Với x khác 2 )
b) \(x=2020\Rightarrow A=x+2=2020+2=2022\)